<em>So</em><em> </em><em>the</em><em> </em><em>right</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>1</em><em>2</em><em> </em><em>m</em><em>.</em>
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em>
<em>H</em><em>ope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>you</em><em>.</em><em>.</em>
<h3>
<em>Good</em><em> </em><em>luck</em><em>.</em><em>.</em><em>.</em></h3>
<em>-Pragya~</em><em>~</em>
f(-12) = -12(-12) + 100 = 144 + 100 = 244
Since a line is equal to 180 degree
you pick one that has the variable x in it.
For example: 5x=180
180/5=36
therefore x=36
2. 6x=180
180/6= 30
x=30
They have collected
cans until now. To equal 325, they need
cans more.
A.
Let C be the number needed to equate atleast 325.

B.
If we solve the inequality in part A, we can find minimum number of C to meet the goal of 325 cans.

<em>So they need minimum 101 to complete the target and more than that to surpass.</em>
ANSWER: 101 cans are needed to meet the goal and more than that to surpass the goal.
First find the rate of growth using the formula of
A=p e^rt
A 7200
P 6000
E constant
R rate of growth?
T time 6 hours
We need to solve for r
R=[log (A/p)÷log (e)]÷t
R=(log(7,200÷6,000)÷log(e))÷6
R=0.03 rate of growth
Now predict how many bacteria will be present after 17 hours using the same formula
A=p e^rt
A ?
P 6000
R 0.03
E constant
T 17 hours
A=6,000×e^(0.03×17)
A=9,991.7 round your answer to get
A=9992