Answer:
475 m , 950 m
Explanation:
Let l be the length of the side perpendicular to the barn.
1900-2l = length of the side parallel to the barn
Area A= l( 1900-2l)
A= 1900l-2l^2
now, the maximum value of l ( the equation being quadratic)
l_max= -b/2a
a= 2
b=1900
l_max= -1900/4= 475 m
then 1900-2l= 1900-2×(475) = 950 m
So, the dimensions that maximize area are
950 and 475
Now. A_max = -2( l_max)^2+1900×l_max
A_max= -2(475)^2+1900×475
A_max= 451250 m^2
or, 475×950 = 451250 m^2
Answer:
its 00.0035474
Explanation:
..... .. . . .. . . . . .. .
Answer:
The terminal speed is 74.833 m/s
Explanation:
The drag force is equal to square of speed:
Fdrag = k*v²
According Newton`s law:
Fnet = m*a
m*g - k*v² = m*a


If terminal speed, the net force is zero.
