<span>y = slope*x + y-intercept;
</span>We can rewrite our equation in a shorter form : y = mx + b;
y = x + 2 ; m1 = 2 and b1 = 2;
y = -x + 6; m2 = -1 and b2 = 6;
<span>Set the two equations for y equal to each other:
</span>x + 2 = -x + 6 ;
<span>Solve for x. This will be the x-coordinate for the point of intersection:
</span>2x = 4;
x = 2;
<span>Use this x-coordinate and plug it into either of the original equations for the lines and solve for y. This will be the y-coordinate of the point of intersection:
</span>y = 2 + 2 ;
y = 4;
<span>The point of intersection for these two lines is (2 , 4).</span>
Tan 135 = -1
so rectangular coordinates are (-7 sqrt2, 7 sqrt2)
Start by writing the system down, I will use
to represent 

Substitute the fact that
into the first equation to get,

Simplify into a quadratic form (
),

Now you can use Vieta's rule which states that any quadratic equation can be written in the following form,

which then must factor into

And the solutions will be
.
Clearly for small coefficients like ours
, this is very easy to figure out. To get 5 and 6 we simply say that
.
This fits the definition as
and
.
So as mentioned, solutions will equal to
but these are just x-values in the solution pairs of a form
.
To get y-values we must substitute 3 for x in the original equation and then also 2 for x in the original equation. Luckily we already know that substituting either of the two numbers yields a zero.
So the solution pairs are
and
.
Hope this helps :)
1. 7+ (-9) = 7-9=-2
2.(-8) + (+5)= -8+5= -(8-5)=-3
3.(+9) - (-3) = 9+3=12
4.(+12) - (-1) = 12+1=13
5. (-7) - (-5) = -7+5==(7-5)=-2
<span>(-14) - (+2) = -14-2=-(14+2)=-16</span>
How much trophies does Jared have(