Answer:


And for this case since the confidence interval contains the value 0 we don't have significant evidence that we have a net change in the levels
Step-by-step explanation:
For this case we have the following info given:
represent the sample size
represent the sample mean
represent the sample deviation
We can calculate the confidence interval for the mean with the following formula:

The confidence level is 0.90 then the significance level would be
and the degrees of freedom are given by:

And the critical value for this case would be:

And replacing we got:


And for this case since the confidence interval contains the value 0 we don't have significant evidence that we have a net change or efectiveness in the levels
Answer: idk
Step-by-step explanation:
Answer:
A. 4K
Step-by-step explanation:
J / 24 = K
J = K x 24
J = 24K
J / 6
= 24K / 6
= 4K
The direction of the difference between the 2 measurements.
<h3>What is nominal and ordinal scale with example?</h3>
- Examples of data for a nominal scale include a person's gender, ethnicity, and hair color.
- On the other hand, an ordinal scale requires putting data in a certain order, or in relation to one another and "ranking" each parameter (variable).
<h3>What is the difference nominal and ordinal?</h3>
- Ordinal data has a preset or natural order, whereas nominal data is categorized without a natural order or rank.
- A number that can be measured, however, will always be present in numerical or quantitative data.
<h3>What is an example of a ordinal scale?</h3>
- First place would go to a student with a score of 99 out of 100; third place would go to a student with a score of 92 out of 100; and so on.
Learn more about ordinal scale and nominal scale here:
brainly.com/question/15998581
#SPJ4
2+2 is 4 LOL you just gotta add 1+1+1+1