If the parabola has y = -4 at both x = 2 and x = 3, then since a parabola is symmetric, its axis of symmetry must be between x = 2 and x = 3, or at x = 5/2. Our general equation can then be:
y = a(x - 5/2)^2 + k
Substitute (1, -2): -2 = a(-3/2)^2 + k
-2 = 9a/4 + k
Substitute (2, -4): -4 = a(-1/2)^2 + k
-4 = a/4 + k
Subtracting: 2 = 2a, so a = 1. Substituting back gives k = -17/4.
So the equation is y = (x - 5/2)^2 - 17/4
Expanding: y = x^2 - 5x + 25/4 - 17/4
y = x^2 - 5x + 2 (This is the standard form.)
Answer:
A. 5000 B: 12000 C 57000
Step-by-step explanation:
All you need to do is look at the hundreds place number and if it is below 4 or is 4 keep the number the same, if it is above 4, increase it by one.
Answer: it will trave 56.89 meters before coming to rest.
Step-by-step explanation:
This is a geometric progression since the distance travelled (height) by the ball is reducing by a constant ratio, r. Since the number of times that the ball will bounce is infinite, then we would apply the formula for determining the sum of the terms in a geometric progression to infinity which is expressed as
S = a/(1 - r)
where
S = sum of the distance travelled by the ball
a = initial distance or height of the ball
r = common ratio
From the information given,
a = 128/9
r = (32/3)/(128/9) = 0.75
Therefore,
S = (128/9)/(1 - 0.75) = 56.89 meters