Answer:
2 sqrt(5) OR 4.5
Step-by-step explanation:
You have to know Pythagorean theorem to solve this question.
a^2 + b^2 = c^2
To use this theorem you have to have a right triangle. There are two right triangles in your image. The lower (larger) one has two sides labeled, so you can use Pythagorean thm to find the third side. There's a short cut, bc some right triangles have easy-to-memorize lengths of the sides. 3-4-5 is one of these number sets. A multiple of this is 6-8-10. We could've solved:
b^2 + 8^2 = 10^2
But it would've come out the same. The unlabeled side is 6.
We can use the 6 and the 4 on the smaller right triangle and use the Pythagorean thm again to solve for x.
4^2 + x^2 = 6^2
16 + x^2 = 36 subtract 16 from both sides.
x^2 = 20
Take the square root of both sides.
sqrt (x^2) = sqrt 20
x = 2 sqrt(5) which is approximately 4.472.
2 sqrt(5) is an exact answer if that is what they are asking for. 4.472 is an approximation to the nearest thousandth. It would be 4.47 to the nearest hundredth or 4.5 to the nearest tenth.
Part 1) we know that
m∠5=44° m∠11=86°
m∠2=m∠5------> by vertical angles
m∠2=44°
m∠13=m∠11------> by vertical angles
m∠13=86°
m∠12+m∠13=180°-----> supplementary angles
m∠12=180-86-----> m∠12=94°
m∠14=m∠12----> by vertical angles
m∠14=94°
m∠1=m∠11----> by corresponding angles
m∠1=86°
m∠4=m∠1----> by vertical angles
m∠4=86°
m∠2+m∠1+m∠6=180
m∠6=180-(86+44)----> 50°
m∠6=50°
m∠3=m∠6----> by vertical angles
m∠3=50°
m∠8=m∠3----> by corresponding angles
m∠8=50°
m∠8+m∠7=180°-----> supplementary angles
m∠7=180-50----> 130°
m∠7=130°
m∠10=m∠6----> by corresponding angles
m∠10=50°
m∠10+m∠9=180°-----> supplementary angles
m∠9=180-50-----> 130°
m∠9=130°
the answers Part 1) are
m∠1=86°
m∠2=44°
m∠3=50°
m∠4=86°
m∠5=44°
m∠6=50°
m∠7=130°
m∠8=50°
m∠9=130°
m∠10=50°
m∠11=86°
m∠12=94°
m∠13=86°
m∠14=94°
Part 2)
a) what is m∠TPR?
in the right triangle PTR
m∠PTR+m∠TPR+m∠TRP=180° ( the sum of internal angles of triangle is equal to 180 degrees)
m∠PTR=30°
m∠TRP=90°
so
m∠TPR=180-(90+30)----> 60°
the answer Part 2a) is
m∠TPR=60°
b) what is the length in inches of segment PR?
in the right triangle PTR
sin 30=PR/TP-----> PR=TP*sin 30-----> PR=14*(1/2)----> 7 in
the answer Part 2b) is
PR=7 in
c) what is the length in inches of segment TR?
in the right triangle PTR
cos 30=TR/PT-----> TR=PT*cos 30-----> TR=14*(√3/2)---> TR=7√3 in
the answer Part 2c) is
TR=7√3 in
d) what is the length in inches of segment PQ?
in the right triangle PQR
PR=7 in
RQ=PR-----> by angle 45°
so
RQ=7 in
applying the Pythagoras Theorem
PQ²=RQ²+PR²-----> 7²+7²-----> PQ²=98-----> PQ=√98 in---> PQ=7√2 in
the answer Part 2d) is
PQ=7√2 in
Part 3) Patrice buys a block of wax in the shape of a right rectangular prism. The dimensions of the block are 20 cm by 9 cm by 8 cm.
<span><span>(a) </span>What is the volume of the block?
volume of the prism=20*9*8-----> 1440 cm³
the answer Part 3 a) is
the volume of the block is 1440 cm³
<span>
Patrice melts the wax and creates a candle in the shape of a circular cylinder that has a diameter of 10 cm and a height of 15 cm.<span>(b) </span>To the nearest centimeter, what is the volume of the candle?
</span></span>volume of a cylinder=pi*r²*h
diameter=10 cm
radius r=10/2----> 5 cm
h=15 cm
volume of a cylinder=pi*5²*15----> 1177.5 cm³-----> 1178 cm³
the answer Part 3b) is
the volume of the candle is 1178 cm³
<span>Patrice decides to use the remaining wax to create a candle in the shape of a cube.<span>(c) </span>To the nearest centimeter, what is the length of the side of the cube?
</span>
the remaining wax=volume of the prism-volume of a cylinder
=1440-1178-----> 262 cm³
volume of a cube=b³
where b is the length side of the cube
262=b³-------b=∛262-----> b=6.40 cm-----> b=6 cm
the answer Part 3c) is
the length of the side of the cube is 6 cm
Answer:
Common ratio is 3
The three terms are 162, 486, 1458
Step-by-step explanation:
Given: The first 4 terms of a sequence are 
To find:
A. the common ratio
B. the next 3 values in the geometric sequence
Solution:
Geometric sequence is a sequence in which each of the terms is obtained by multiplying the previous term by a fixed number.
A.

So, the common ratio is 
B.
The next three values are as follows:

Answer:
A. I can't quite see the question, but I'm pretty sure it's A
Step-by-step explanation:
Sin(A) = 1/3
Sin^2(A) + Cos^2(A) = 1
(1/3)^2 + cos^2(A) = 1
1/9 + cos^2(A) = 1
cos^2(A) = 1 - 1/9
cos^2(A) = 8/9
cos(A) = √(8/9)
√8 = √(2 * 2 * 2) = 2√2
√9 = 3
cos(A) = 2√2/3