The true statement about her method would be to start at the origin. But you would go up 4 spaces you would go to the right 4 spaces.
<em>So</em><em>,</em><em> </em><em>the</em><em> </em><em>right</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>of</em><em> </em><em>option</em><em> </em><em>A</em><em>.</em>
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em>⤴</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>.</em>
40 x 10 = 400
400 / 100 = 4
Mai has 4 hundreds.
We find the base of the rectangles by taking the difference between the interval endpoints, and dividing by 2.
Base of rectangle = (6 - 2) / 2
= 2
The area of the first rectangle:
(4 - 2)f(4) = 2[4 + cos(4π)]
The area the second triangle:
(6 - 4)f(6) = 2[6 + cos(6π)]
Now just compute the two areas and combined them. That will give you the estimated under the curve.
To evaluate the midpoint of each rectangle, we take the midpoint of the base lengths of each rectangle. This midpoint is the x value. Then evaluate the function at that x value.
The midpoint of the first rectangle is x=3. Evaluate f(3).
The midpoint of the second rectangle is x=5. Evaluate f(5).
The graph with the highest absolute value is the steepest. In this case, the answer is C.