Answer:
a) time t1 = 2.14s
b) initial angular speed w1 = 6 rad/s
Explanation:
Given that;
Initial Angular velocity = w1
Angular distance = s = 65 rad
time = t = 5 s
Angular acceleration a = 2.80 rad/s^2
Using the equation of motion;
s = w1t + (at^2)/2
w1 = (s-0.5(at^2))/t
Substituting the values;
w1 = (65 - (0.5×2.8×5^2))/5
w1 = 6rad/s
Time to reach w1 from rest;
w1 = at1
t1 = w1/a = 6/2.8 = 2.14s
a) time t1 = 2.14s
b) initial angular speed w1 = 6 rad/s
Answer:
on and off
Explanation:
if there are switches, it can change if the electricity can get to the bulb or not. if it appears that there is no pathway for the electricity to get to the light bulb, it is of, if there is a pathway, its on
Answer:
a) 1.082 × 10⁻¹⁹C ( e = 1.6 × 10⁻¹⁹C)
b) 3.466 × 10¹¹ N/C
Explanation:
a)
p(r) = -A exp ( - 2r/a₀)
Q = ₀∫^∞ ₀∫^π ₀∫^2xπ p(r)dV = -A ₀∫^∞ ₀∫^π ₀∫^2π exp ( - 2r/a₀)r² sinθdrdθd∅
Q = -4πA ₀∫^∞ exp ( - 2r/a₀)r²dr = -e
now using integration by parts;
A = e / πa₀³
p(r) = - (e / πa₀³) exp (-2r/a₀)
Now Net charge inside a sphere of radius a₀ i.e Qnet is;
= e - (e / πa₀³) ₀∫^a₀ ₀∫^π ₀∫^2π r² exp (-2r/a₀)dr
= e - e + 5e exp (-2) = 1.082 × 10⁻¹⁹C ( e = 1.6 × 10⁻¹⁹C)
b)
Using Gauss's law,
E × 4πa₀ ² = Qnet / ∈₀
E = 4πa₀ ² × Qnet × 1/a₀²
E = 3.466 × 10¹¹ N/C
Answer: The thermal energy transfer is When a fluid, such as air or a liquid, is heated and then travels away from the source, it carries the thermal energy along.
Explanation: heat transfer is called convection. hopefully this was helpful.
Answer:
6.13 s
219 N
Explanation:
Newton's law in the x direction:
∑F = ma
150 cos 30° N − 50 N = (30 kg) a
a = 2.66 m/s²
Δx = v₀ t + ½ at²
(50 m) = (0 m/s) t + ½ (2.66 m/s²) t²
t = 6.13 s
Newton's law in the y direction:
∑F = ma
Fn + 150 sin 30° N − (30 kg) (9.8 m/s²) = 0
Fn = 219 N