The weight should be shared between the two string equally. Therefore, tension in each string, T is;
T = 120 N/2 = 60 N
A projectile motion is characterized by motion moving in a direction of an arc. It is acted upon by two component vectors: the horizontal and vertical. These two vectors are independent of each other when it comes to time of flight. The horizontal direction travels at constant speed, while the vertical direction travels at constant acceleration due to gravity, The time for an object to reach the ground would be equal, whether dropped from the sampe point or thrown in a projectile motion. Of course, this is assuming ideality wherein there is no air resistance.
So, the hang up time, or the time the object stayed on air is calculated using this equation:
a = Δv/t
Δv is the change in velocity which is the initial velocity when it was dropped to when it reaches zero velocity when it hits the ground.
9.81 m/s² = |(0 - 7.3)|/t
t = 0.744 seconds
<span>First we can find the circumference of the whole circle with a radius of 5 feet.
circumference = 2 pi radius
circumference = (2 pi) (5 feet)
circumference = (10 pi) feet
From one high point to the other high point, the string moves through an angle of 10 degrees. Since a full circle is 360 degrees, this angle is 1/36 of a full circle.
Therefore, the arc length is 1/36 of the whole circumference.
arc length = (1/36) (circumference)
arc length = (1/36) (10 pi) feet
arc length = 0.873 feet</span>
Answer: The tidal forces exerted by the moon are directly associated with the earth's rotation. Due to the strong gravitational pull of the moon, the tidal bulging appears on both the sides on earth and these are region of high tide, and there is gradual rise and fall of sea level.
Because of these tidal effect, the earth is able to rotate only once in each of the orbital period.