Answer:
y=x-3/4
Step-by-step explanation:
y-int is b (y=mx+b) so the slope is m. all u have to do is plug in
A=37,185×(1+0.02÷4)^(4×11)
A=46,309.97
Answer:
x = - 2.5
Step-by-step explanation:
Given that the sketch represents
y = x² + bx + c
The graph crosses the y- axis at (0 , - 14), thus c = - 14
y = x² + bx - 14
Given the graph crosses the x- axis at (2, 0), then
0 = 2² + 2b - 14
0 = 4 + 2b - 14 = 2b - 10 ( add 10 to both sides )
10 = 2b ( divide both sides by 2 )
b = 5
y = x² + 5x - 14 ← represents the graph
let y = 0 , then
x² + 5x - 14 = 0 ← in standard form
(x + 7)(x - 2) = 0 ← in factored form
Equate each factor to zero and solve for x
x + 7 = 0 ⇒ x = - 7
x - 2 = 0 ⇒ x = 2
The x- intercepts are x = - 7 and x = 2
The vertex lies on the axis of symmetry which is midway between the x- intercepts, thus
the x- coordinate of the turning point is
=
= - 2.5
Answer:

Step-by-step explanation:
As the given Augmented matrix is
![\left[\begin{array}{ccccc}9&-2&0&-4&:8\\0&7&-1&-1&:9\\8&12&-6&5&:-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D9%26-2%260%26-4%26%3A8%5C%5C0%267%26-1%26-1%26%3A9%5C%5C8%2612%26-6%265%26%3A-2%5Cend%7Barray%7D%5Cright%5D)
Step 1 :
↔
![\left[\begin{array}{ccccc}1&-14&6&-9&:10\\0&7&-1&-1&:9\\8&12&-6&5&:-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%26-14%266%26-9%26%3A10%5C%5C0%267%26-1%26-1%26%3A9%5C%5C8%2612%26-6%265%26%3A-2%5Cend%7Barray%7D%5Cright%5D)
Step 2 :
↔
![\left[\begin{array}{ccccc}1&-14&6&-9&:10\\0&7&-1&-1&:9\\0&124&-54&77&:-82\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%26-14%266%26-9%26%3A10%5C%5C0%267%26-1%26-1%26%3A9%5C%5C0%26124%26-54%2677%26%3A-82%5Cend%7Barray%7D%5Cright%5D)
Step 3 :
↔
![\left[\begin{array}{ccccc}1&-14&6&-9&:10\\0&1&-\frac{1}{7} &-\frac{1}{7} &:\frac{9}{7} \\0&124&-54&77&:-82\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%26-14%266%26-9%26%3A10%5C%5C0%261%26-%5Cfrac%7B1%7D%7B7%7D%20%26-%5Cfrac%7B1%7D%7B7%7D%20%26%3A%5Cfrac%7B9%7D%7B7%7D%20%5C%5C0%26124%26-54%2677%26%3A-82%5Cend%7Barray%7D%5Cright%5D)
Step 4 :
↔
,
↔
![\left[\begin{array}{ccccc}1&0&4&-11&:-8\\0&1&-\frac{1}{7} &-\frac{1}{7} &:\frac{9}{7} \\0&0&- \frac{254}{7} &\frac{663}{7} &:-\frac{1690}{7} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%260%264%26-11%26%3A-8%5C%5C0%261%26-%5Cfrac%7B1%7D%7B7%7D%20%26-%5Cfrac%7B1%7D%7B7%7D%20%26%3A%5Cfrac%7B9%7D%7B7%7D%20%5C%5C0%260%26-%20%5Cfrac%7B254%7D%7B7%7D%20%26%5Cfrac%7B663%7D%7B7%7D%20%26%3A-%5Cfrac%7B1690%7D%7B7%7D%20%5Cend%7Barray%7D%5Cright%5D)
Step 5 :
↔
![\left[\begin{array}{ccccc}1&0&4&-11&:-8\\0&1&-\frac{1}{7} &-\frac{1}{7} &:\frac{9}{7} \\0&0&1&-\frac{663}{254} &:-\frac{1690}{254} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%260%264%26-11%26%3A-8%5C%5C0%261%26-%5Cfrac%7B1%7D%7B7%7D%20%26-%5Cfrac%7B1%7D%7B7%7D%20%26%3A%5Cfrac%7B9%7D%7B7%7D%20%5C%5C0%260%261%26-%5Cfrac%7B663%7D%7B254%7D%20%26%3A-%5Cfrac%7B1690%7D%7B254%7D%20%5Cend%7Barray%7D%5Cright%5D)
Step 6 :
↔
,
↔
![\left[\begin{array}{ccccc}1&0&0&-\frac{71}{127} &:\frac{176}{127} \\0&1&0&-\frac{131}{254} &:\frac{284}{127} \\0&0&1&-\frac{663}{254} &:\frac{845}{127} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%260%260%26-%5Cfrac%7B71%7D%7B127%7D%20%26%3A%5Cfrac%7B176%7D%7B127%7D%20%5C%5C0%261%260%26-%5Cfrac%7B131%7D%7B254%7D%20%26%3A%5Cfrac%7B284%7D%7B127%7D%20%5C%5C0%260%261%26-%5Cfrac%7B663%7D%7B254%7D%20%26%3A%5Cfrac%7B845%7D%7B127%7D%20%5Cend%7Barray%7D%5Cright%5D)
∴ we get
