JH = mid-segment of triangle KLM.
ML = 22
(1/2)(ML) = 11
JH = (1/2)(ML) = x
So, x = 11.
Applying the centroid theorem of a triangle, the length of CG is: 26.
<em><u>Recall:</u></em>
- Medians join the vertices to the midpoint of the opposite sides of a triangle.
- The center that all the three medians intersect at is called the centroid.
- Based on the centroid theorem, the distant from the centroid to the vertex = 2/3 of the median length.
Triangle ABC is shown in the image attached below. G is the centroid.
CF = 39 (median)
CG = 2/3(CF) ---> Centroid Theorem.
CG = 2/3(39)
CG = 26
Therefore, applying the centroid theorem of a triangle, the length of CG is: 26.
Learn more about centroid theorem on:
brainly.com/question/20627009
Answer:
1st Option;
j = 4.5
k = 2
Step-by-step explanation:
Let's solve for "j" first:
=> We know that by the definition of midpoint segment theorem we can say;
3j = 5j - 9
0 = 5j - 3j - 9
0 = 2j - 9
0 + 9 = 2j
9 = 2j
9/2 = j
4.5 = j
=> Now that we have j-value we use the same method to solve for k-value;
6k = k + 10
6k - k = 10
5k = 10
k = 10/5
k = 2
Therefore;
j = 4.5
k = 2
<u>So the first option would be correct!</u>
Hope this helps!
What would be the question????