Step-by-step explanation:
Remove the parentheses: 15a²-6ab+8a²+20+5ab-31+a²-ab Combine like terms: 24a²-2ab-11
Answer: 24a²-2ab-11
It would be b because if you take 10 and shusbejsjdhebe
The zeros of given function
is – 5 and – 3
<u>Solution:</u>

We have to find the zeros of the function by rewriting the function in intercept form.
By using intercept form, we can put value of y as to obtain zeros of function
We know that, intercept form of above equation is 


Taking “x” as common from first two terms and “3” as common from last two terms
x (x + 5) + 3(x + 5) = 0
(x + 5)(x + 3) = 0
Equating to 0 we get,
x + 5 = 0 or x + 3 = 0
x = - 5 or – 3
Hence, the zeroes of the given function are – 5 and – 3