Energizer due to a chemical that duracell does not have
![\tt -\dfrac{1}{2}\dfrac{d[N_2O]}{dt}=\dfrac{1}{2}\dfrac{d[N_2]}{dt}=\dfrac{1}{1}\dfrac{d[O_2]}{dt}](https://tex.z-dn.net/?f=%5Ctt%20-%5Cdfrac%7B1%7D%7B2%7D%5Cdfrac%7Bd%5BN_2O%5D%7D%7Bdt%7D%3D%5Cdfrac%7B1%7D%7B2%7D%5Cdfrac%7Bd%5BN_2%5D%7D%7Bdt%7D%3D%5Cdfrac%7B1%7D%7B1%7D%5Cdfrac%7Bd%5BO_2%5D%7D%7Bdt%7D)
<h3>Further explanation</h3>
Reaction
2N2O(g) — 2N2(g) + O2(g)
Required
relative rate
Solution
The reaction rate (v) shows the change in the concentration of the substance (changes in addition to concentrations for reaction products or changes in concentration reduction for reactants) per unit time.
so the relative rates for the reaction above are :
![\tt -\dfrac{1}{2}\dfrac{d[N_2O]}{dt}=\dfrac{1}{2}\dfrac{d[N_2]}{dt}=\dfrac{1}{1}\dfrac{d[O_2]}{dt}](https://tex.z-dn.net/?f=%5Ctt%20-%5Cdfrac%7B1%7D%7B2%7D%5Cdfrac%7Bd%5BN_2O%5D%7D%7Bdt%7D%3D%5Cdfrac%7B1%7D%7B2%7D%5Cdfrac%7Bd%5BN_2%5D%7D%7Bdt%7D%3D%5Cdfrac%7B1%7D%7B1%7D%5Cdfrac%7Bd%5BO_2%5D%7D%7Bdt%7D)
The theoretical yield of urea : = 227.4 kg
<h3>Further explanation</h3>
Given
Reaction
2NH3(aq)+CO2(aq)→CH4N2O(aq)+H2O(l)
128.9 kg of ammonia
211.4 kg of carbon dioxide
166.3 kg of urea.
Required
The theoretical yield of urea
Solution
mol Ammonia (MW=17 g/mol)
=128.9 : 17
= 7.58 kmol
mol CO₂(MW=44 g/mol) :
= 211.4 : 44
= 4.805 kmol
Mol : coefficient of reactant , NH₃ : CO₂ :
= 7.58/2 : 4.805/1
=3.79 : 4.805
Ammonia as limiting reactant(smaller ratio)
Mol urea based on mol Ammonia :
=1/2 x 7.58
=3.79 kmol
Mass urea :
=3.79 kmol x 60 g/mol
= 227.4 kg
C, erosion. Erosion is the natural process of breaking down natural products through wind, or similar natural resources.