Answer:
It will go faster each time because she is stirring therefore the water can get to the salt faster than it just sitting at the top
Explanation:
My answer to the question above is not the best example but I hope it will help you. <span>The Arrhenius model says that acids always contain H+ and that bases always contain OH-. </span>
<span>The Bronsted-Lowry model thinks of acids as being proton donors and proton acceptors, so bases no longer need to contain OH-, and acids donate a proton to water forming H3O+. </span>
<span>Lewis acids are electron pair acceptors, and Lewis bases are electron pair donors. For instance, H+ + OH- => H20. H+ has no electrons, so when it bonds to the Oxygen, it gains an electron pair. OH- "loses" an electron pair.</span>
<span>A saturated solution is one where no more solid can dissolve at the temperature and pressure used </span>
Answer:
2.1 atm
Explanation:
We are given the following variables to work with:
Initial pressure (P1): 2.5 atm
Initial temperature (T1): 320 K
Final temperature (T2): 273 K
Constant volume: 7.0 L
We are asked to find the final pressure (P2). Since volume is constant, we want to choose a gas law equation that relates initial pressure and temperature to final pressure and temperature. Gay-Lussac's law does this:

We can rearrange the law algebraically to solve for
.

Substitute your known variables and solve:

When moist air cools below its dew point on a cold surface it forms dew. It is in the liquid state.
Rain is again a form of precipitation in which water is in the liquid state.
When air temperature is below freezing, the precipitation that results is referred to as frost. Hail is a form of precipitation in the ice balls whereas as sleet is a mixture of rain and snow.
Ans: Forms of frozen water- frost, hail and sleet