I cannot draw a picture, you can.
6 friends multiplied by 1/2 a pie each is 3 pies. That leaves 2 pies to divide evenly among 6 friends. 2/6 = 1/3. One third more pie more for everyone.
I will add the length and convert it to yards and then subtract it from 4/6 yards.
Answer:
- <em>The net change in how many bags are on the shelf, from the beginning of Tuesday to the end of Monday is -</em><u>2.</u>
Explanation:
The change in the number of bags any day is the number of bags is equal to the number of bags purchased to restock less the number of bags sold that day.
- Change = bags purchased to restock - bags sold
At the end of <em>Tuesday</em>, the change is:
- Change: 6 - 5 = 1 (note that this means that the number of bags increases by 1)
At the end of <em>Wednesday</em>, the change is:
- Change: 12 - 8 = 4 (the number of bags increases by 4)
At the end of <em>Thursday</em>, the change is:
- Change: 12 - 2 = 10 (the number of bags increases by 10)
At the end of <em>Friday</em>, the change is:
- Change: 18 - 19 = - 1 (the number of bags decreases by 1).
At the end of <em>Saturday</em>, the change is:
- Change: 24 - 22 = 2 (the number of bags increases by 2).
At the end of <em>Sunday</em>, the change is:
- Change: 0 - 15 = - 15 (the number of bags decreases by 15).
At the end of <u>Monday</u>, the change is:
- Change: 0 - 3 = - 3 (the number of bags decreases by 3).
The net change in how many bags are on the shelf, from the beginning of Tuesday to the end of Monday equals the algebraic sum of every change:
- Net change = 1 + 4 + 10 + (-1) + 2 + (-15) + (-3)
- Using associative property: (1 + 4 + 10 + 2) - (1 + 15 +3)
- Simplifying: 17 - 19 = -2
<u>Conclusion</u>: the net change in how many bags are on the shelf, from the beginning of Tuesday to the end of Monday is -2, meaning that the number of bags, after taking into account all sales and restock, decreases by 2.
The probability that Gina randomly selected two red marbles is 1/19
<u>Explanation:</u>
Total number of marbles = 7 + 5 + 8
= 20
The probability of getting two red marbles in the fraction form is given as:
P(first red marble) = number of red marbles / total number of marbles
P(first red marble) = 
P(second red marble) = number of red marbles after 1 white marble is removed / total number of marbles after 1 red marble is removed.
P(first red marble) = 
P(two red marbles) = P(first) X P(second)
= 
= 
Therefore, the probability that Gina randomly selected two red marbles is 1/19
Answer:
p > 5 and p <-8
Step-by-step explanation:
To solve this, you first need to isolate p.
First add 6 on both sides of the equation:

Then subtract 3 from both sides of the equation.

The divide both sides by 2.

Another solution is possible because of the absolute value.
If 
Then 
<em>Thus we can solve the second solution:</em>


Isolate P again by subtracting both sides by 3


Then divide both sides by 2:

