Not sure sorry I will look at it again though
Answer with explanation:
The given function is:
y=x³+3 x²-x-3
=x²(x+3) -1(x+3)
= (x²-1)(x+3)
= (x-1)(x+1)(x+3)
Put, y=0 , gives
⇒ (x-1)(x+1)(x+3)=0
≡→x-1=0 ∧ → x+1=0 ∧→x+3=0
≡x=1, -1, -3
So, there are three breaking points in the curve.
1.⇒Putting, x=1 , in the function
y(1)=1³+3×1²-1 -3
=1 +3-4
=0
2. ⇒Putting, x=-1 , in the function
y(-1)=(-1)³+3×(-1)²-(-1) -3
= -1 +3+1-3
=0
3.⇒Putting, x=-3 , in the function
y(-3)=(-3)³+3×(-3)²-(-3) -3
=-27+27+3-3
=0
So, These are points where curve crosses the X axis, which are , (1,0),(-1,0) and (-3,0).
But turning points are those points where curve takes the turn , that is, if it is increasing function then it starts decreasing or becomes constant function after that point, and if it is a decreasing function then it becomes increasing or constant function.
So,turning points of the given function by looking at the graph of the function by approximation
Option B:→(-2,3) and (0, -3)
If the last digit in 1.50 is less than 5, then remove the last digit.
If the last digit in 1.50 is 5 or more and the second to the last digit in 1.50 is less than 9, then remove the last digit and add 1 to the second to the last digit.
If the last digit in 1.50 is 5 or more and the second to the last digit in 1.50 is 9, then remove the last digit, make the second to last digit 0, and add 1 to the number to the left of the decimal place.
When rounding 1.50 to one decimal place we use One Decimal Place Rule #1. Therefore, the answer to "What is 1.50 rounded to 1 decimal place?" is:
1.5
If there is 2 digits and 7 numbers the combos would be:
1,1 2,1 3,1 4,1 5,1 6,1 7,1
1,2 2,2 3,2 4,2 5,2 6,2 7,2
1,3 2,3 3,3 4,3 5,3 6,3 7,3
1,4 2,4 3,4 4,4 5,4 6,4 7,4
1,5 2,5 3,5 4,5 5,5 6,5 7,5
1,6 2,6 3,6 4,6 5,6 6,6 7,6
1,7 2,7 3,7 4,7 5,7 6,7 7,7
Therefore there are 49 possible combinations :)