Answer:
T = 4.42 10⁴ N
Explanation:
this is a problem of standing waves, let's start with the open tube, to calculate the wavelength
λ = 4L / n n = 1, 3, 5, ... (2n-1)
How the third resonance is excited
m = 3
L = 192 cm = 1.92 m
λ = 4 1.92 / 3
λ = 2.56 m
As in the resonant processes, the frequency is maintained until you look for the frequency in this tube, with the speed ratio
v = λ f
f = v / λ
f = 343 / 2.56
f = 133.98 Hz
Now he works with the rope, which oscillates in its second mode m = 2 and has a length of L = 37 cm = 0.37 m
The expression for standing waves on a string is
λ = 2L / n
λ = 2 0.37 / 2
λ = 0.37 m
The speed of the wave is
v = λ f
As we have some resonance processes between the string and the tube the frequency is the same
v = 0.37 133.98
v = 49.57 m / s
Let's use the relationship of the speed of the wave with the properties of the string
v = √ T /μ
T = v² μ
T = 49.57² 18
T = 4.42 10⁴ N
Answer:
Explanation:
Length if the bar is 1m=100cm
The tip of the bar serves as fulcrum
A force of 20N (upward) is applied at the tip of the other end. Then, the force is 100cm from the fulcrum
The crate lid is 2cm from the fulcrum, let the force (downward) acting on the crate be F.
Using moment
Sum of the moments of all forces about any point in the plane must be zero.
Let take moment about the fulcrum
100×20-F×2=0
2000-2F=0
2F=2000
Then, F=1000N
The force acting in the crate lid is 1000N
Option D is correct
answers to electronic devices quiz
DCCABDADAD
100% just took quiz
Answer:
Hank u so much out don't know how much this rally
Explanation: