Answer:
3.7 m/s
Explanation:
M = 444 kg
U = 5 m/s
m = 344 kg
u = - 5 m/s
Let the velocity of train is V and the car s v after the collision.
As the collision is elastic
By use of conservation of momentum
MU + mu = MV + mv
444 x 5 - 344 x 5 = 444 V + 344 v
500 = 444 V + 344 v
125 = 111 V + 86 v .... (1)
By using the formula of coefficient of restitution ( e = 1 for elastic collision)

-5 - 5 = V - v
V - v = - 10
v = V + 10
Substitute the value of v in equation (1)
125 = 111 V + 86 (V + 10)
125 = 197 V + 860
197 V = - 735
V = - 3.7 m/s
Thus, the speed of first car after collision is 3.7 m/s. negative sign shows that the direction is reverse as before the collision.
Answer is b that is Heat energy from below the ground converts water to steam to drive a steam turbine attached to an electrical generator.. .
Force = mass x acceleration
15 = mass x 4
Mass = 15/4
Mass = 3.75 Kg
This is a great problem if you like getting tied up in knots
and making smoke come out of your brain.
I found that it makes the problem a lot easier if I give the objects some
numbers. I'm going to say that the mass of Object 5 is 20 clods.
Let the mass of Mass of Object 5 be 20 clods .
Then . . .
-- The mass of Object 2 is double the mass of Object 5 = 40 clods.
-- The mass of Object 4 is half of the mass of Object 5 = 10 clods.
and
-- the mass of Object 3 is half of the mass of Object 4 = 5 clods.
So now, here are the masses:
Object #1 . . . . . unknown
Object #2 . . . . . 40 clods
Object #3 . . . . . 5 clods
Object #4 . . . . . 10 clods
Object #5 . . . . . 20 clods .
Now let's check out the statements, and see how they stack up:
Choice-A:
Object 3 and Object 5 exert the same gravitational force on Object 1.
Can't be.
Objects #3 and #5 have different masses, so they can't both
exert the same force on the same mass.
Choice-B.
Object 2 and Object 4 exert the same gravitational force on Object 1.
Can't be.
Objects #2 and #4 have different masses, so they can't both
exert the same force on the same mass.
Choice-C.
The gravitational force between Object 1 and Object 2 is greater than
the gravitational force between Object 1 and Object 4.
Yes ! Yay !
Object-2 has more mass than Object-4 has, so it must exert more force on
ANYTHING than Object-4 does, (as long as the distances are the same).
Choice-D.
The gravitational force between Object 1 and Object 3 is greater than the gravitational force between Object 1 and Object 5.
Can't be.
Object-3 has less mass than Object-5 has, so it must exert less force on
ANYTHING than Object-4 does, (as long as the distances are the same).
Conclusion:
If the DISTANCE is the same for all the tests, then Choice-C is
the only one that can be true.
Answer:
I'm pretty sure it's 3.
Explanation:
Because if you look at your options the only that would be relevant to tick marks would be either 4 or 3. And it said in the question that we're looking for the one for the dependent variable. And the dependent variable is on the Y- Axis and the 3 is the tick marks for the y-axis. So your answer is 3.