1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
denis-greek [22]
3 years ago
5

What is the value of (g o f)(3)?

Mathematics
1 answer:
Phantasy [73]3 years ago
4 0

Answer:

- 13

Step-by-step explanation:

To evaluate (g ○ f)(3), evaluate f(3) then use this value to evaluate g(x)

f(3) = 3 - 7 = - 4, then

g(- 4) = 4(- 4) + 3 = - 16 + 3 = - 13

You might be interested in
Union City Bakery uses a chocolate chip muffin recipe that yields 1/2 cup of milk for every batch of 12 chocolate chip muffins.
nikitadnepr [17]

Answer:

Grease bottoms only of 12 muffin cups or line with baking cups. ... I made some changes to the recipe;

Step-by-step explanation:

I added 1 cup milk, 1 cup chips, 1 cup ... was way too much batter for 12 muffins; I ended up making two trays and they were done in 18 minutes. I give it four stars only because of all the changes I had to make

6 0
3 years ago
The graph of f(x)= 3/1+x^2 is shown in the figure to the right. Use the second derivative of f to find the intervals on which f
GenaCL600 [577]

Answer:

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

General Formulas and Concepts:

<u>Calculus</u>

Derivative of a Constant is 0.

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Second Derivative Test:

  • Possible Points of Inflection (P.P.I) - Tells us the possible x-values where the graph f(x) may change concavity. Occurs when f"(x) = 0 or undefined
  • Points of Inflection (P.I) - Actual x-values when the graph f(x) changes concavity
  • Number Line Test - Helps us determine whether a P.P.I is a P.I

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{3}{1+x^2}

<u>Step 2: Find 2nd Derivative</u>

  1. 1st Derivative [Quotient/Chain/Basic]:                           f'(x)=\frac{0(1+x^2)-2x \cdot 3}{(1+x^2)^2}
  2. Simplify 1st Derivative:                                                           f'(x)=\frac{-6x}{(1+x^2)^2}
  3. 2nd Derivative [Quotient/Chain/Basic]:     f"(x)=\frac{-6(1+x^2)^2-2(1+x^2) \cdot 2x \cdot -6x}{((1+x^2)^2)^2}
  4. Simplify 2nd Derivative:                                                       f"(x)=\frac{6(3x^2-1)}{(1+x^2)^3}

<u>Step 3: Find P.P.I</u>

  • Set f"(x) equal to zero:                    0=\frac{6(3x^2-1)}{(1+x^2)^3}

<em>Case 1: f" is 0</em>

  1. Solve Numerator:                           0=6(3x^2-1)
  2. Divide 6:                                          0=3x^2-1
  3. Add 1:                                              1=3x^2
  4. Divide 3:                                         \frac{1}{3} =x^2
  5. Square root:                                   \pm \sqrt{\frac{1}{3}} =x
  6. Simplify:                                          \pm \frac{\sqrt{3}}{3}  =x
  7. Rewrite:                                          x= \pm \frac{\sqrt{3}}{3}

<em>Case 2: f" is undefined</em>

  1. Solve Denominator:                    0=(1+x^2)^3
  2. Cube root:                                   0=1+x^2
  3. Subtract 1:                                    -1=x^2

We don't go into imaginary numbers when dealing with the 2nd Derivative Test, so our P.P.I is x= \pm \frac{\sqrt{3}}{3} (x ≈ ±0.57735).

<u>Step 4: Number Line Test</u>

<em>See Attachment.</em>

We plug in the test points into the 2nd Derivative and see if the P.P.I is a P.I.

x = -1

  1. Substitute:                    f"(x)=\frac{6(3(-1)^2-1)}{(1+(-1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                        f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up before x=\frac{-\sqrt{3}}{3}.

x = 0

  1. Substitute:                    f"(x)=\frac{6(3(0)^2-1)}{(1+(0)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(0)-1)}{(1+0)^3}
  3. Multiply:                       f"(x)=\frac{6(0-1)}{(1+0)^3}
  4. Subtract/Add:              f"(x)=\frac{6(-1)}{(1)^3}
  5. Exponents:                  f"(x)=\frac{6(-1)}{1}
  6. Multiply:                       f"(x)=\frac{-6}{1}
  7. Divide:                         f"(x)=-6

This means that the graph f(x) is concave down between  and .

x = 1

  1. Substitute:                    f"(x)=\frac{6(3(1)^2-1)}{(1+(1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                       f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up after x=\frac{\sqrt{3}}{3}.

<u>Step 5: Identify</u>

Since f"(x) changes concavity from positive to negative at x=\frac{-\sqrt{3}}{3} and changes from negative to positive at x=\frac{\sqrt{3}}{3}, then we know that the P.P.I's x= \pm \frac{\sqrt{3}}{3} are actually P.I's.

Let's find what actual <em>point </em>on f(x) when the concavity changes.

x=\frac{-\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+(\frac{-\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{-\sqrt{3}}{3} )=\frac{9}{4}

x=\frac{\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{\sqrt{3}}{3} )=\frac{3}{1+(\frac{\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{\sqrt{3}}{3} )=\frac{9}{4}

<u>Step 6: Define Intervals</u>

We know that <em>before </em>f(x) reaches x=\frac{-\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

We know that <em>after </em>f(x) passes x=\frac{\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

We know that <em>after</em> f(x) <em>passes</em> x=\frac{-\sqrt{3}}{3} , the graph is concave up <em>until</em> x=\frac{\sqrt{3}}{3}. We used the 2nd Derivative Test to confirm this.

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

6 0
2 years ago
Which data set has the largest standard deviation?
fomenos

Answer:

I Believe It Is B.), Have Fun Dreamer!

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Lin and Jada each walk at a steady rate from school to the library. Lin can walk 13 miles in 5 hours, and Jada can walk 25 miles
astra-53 [7]

Answer:

It will take Lin an hour and 25 minutes at her constant speed, and it will take Jada at her constant speed an hour and 30 minutes.

SO, Lin will arrive at 4:25

and Jada will arrive at 4:30

There is a 5 minute difference in time.

Step-by-step explanation:

From the facts given, Lin can walk 13 miles in 5 hours which when you divide means she can walk 2.6 mph (miles per hour), and Jada can walk 2.5 mph.

To get these answers you divide the current speeds into the total distance

For example, in Lin's case...

3.25 (The 3 and 1/4 mile converted to decimal form)

2.6 (Lin's Average speed per hour)

3.25/2.6=1.25

1.25 (1 hour and 25 minutes)

5 0
3 years ago
The height of a triangle is 4 sqrt 3 . What is the perimeter of the equatorial triangle?
Karo-lina-s [1.5K]

The perimeter of the equatorial triangle is 24 units

<h3><u>Solution:</u></h3>

Given that,

An equilateral triangle has an height equal to 4 \sqrt{3}

The triangle is shown below

From Triangle ABC in the shown figure AD =4 \sqrt{3}

Let the sides of the equilateral triangle be ‘a’

AB = BC = a

Since, it is an equilateral triangle we get,

BD = DC = a ÷ 2

Now, using Pythagoras Theorem in Triangle ABD,

The Pythagorean theorem is this: In a right triangle, the sum of the squares of the lengths of the two legs is equal to the square of the length of the hypotenuse.

\mathrm{AB}^{2}=\mathrm{BD}^{2}+\mathrm{AD}^{2}

\begin{array}{l}{a^{2}=\left(\frac{a}{2}\right)^{2}+(4 \sqrt{3})^{2}} \\\\ {a^{2}-\left(\frac{a}{2}\right)^{2}=(4 \sqrt{3})^{2}}\end{array}

\frac{4 a^{2}-a^{2}}{4}=16 \times 3

\begin{array}{l}{\frac{3 a^{2}}{4}=16 \times 3} \\\\ {3 a^{2}=192} \\\\ {a^{2}=192 \div 3=64}\end{array}

a = 8

Hence, the three sides of the triangle are 8 units each

In equilateral traingle, length of all three sides of triangle are equal

So, Perimeter = 3 \times (Length of each side of triangle)

Perimeter = 3 \times 8 = 24

Thus the perimeter of the equatorial triangle is 24 units

7 0
3 years ago
Other questions:
  • Yo can someone pass a brainly plus account ​
    5·1 answer
  • Mary is creating valentine’s Day card for her friends and can choose from white,red,or pink construction paper to create a heart
    12·1 answer
  • How many total pieces of colored paper are in the package use the rate your wrote in Part A
    11·1 answer
  • 77/99 as a fraction or mixed number in simplest form
    9·1 answer
  • The line that is parallel to the x-axis passes through the point (4,12) has the equation
    5·1 answer
  • Find the common difference of the arithmic sequence 19 13 17 21
    5·1 answer
  • PLZ HELP ILL MARK BRAINLEST
    10·1 answer
  • There are 80 students in the 7th grade. 25% of them were absent yesterday. How many
    9·1 answer
  • Convert 3.12 mm into cm, m and km.​
    12·1 answer
  • 8x + y = 20<br> x - 2y = -6
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!