Answer:
Number of molecules = 1.8267×10^20
Explanation:
From the question, we can deuced that the gases behave ideally, the we can make use of the ideal gas equation, which is expressed below;
PV = nRT
where
P =pressure
V =volume
n = the number of moles
R is the gas constant equal to 0.0821 L·atm/mol·K
T is the absolute temperature
Given:
P = 6.75 atm;
T = 290.0 k,
; V = 1.07 cm³ = 0.001 L
( 6.75 atm)(0.00107 L) = n(0.0821 L·atm/mol·K)(290K)
n = 3.0335167*10^-4 moles
But there are 6.022×10²³ molecules in 1 mole,
Number of molecules = 1.8267×10^20
Answer:
hey listen I'll hate to take the pts and go but I have to do what a man have to do
Answer: 13.31 moles.
Explanation: So take 452 grams of Argon and multiply by the molar mass of Argon. Your units will cancel out, leaving you with moles of Argon.
A goes with u, C with G, and T with A
Here's a hint. One of these is a liquid, one is a gas, and one is a radioactive gas. Match each of these descriptions to the right element, and tell me which one you would be most likely to be emitted from your stove.