Answer: -
Surface Tension
Explanation: -
Surface tension is cohesive force created as a result of hydrogen bonding, that enables a liquid drop to have a minimum surface area.
Due to it being cohesive, the water top surface is concave in nature, allowing us to hence slightly overfill a glass with water.
Due to surface tension, the surface of water behaves like a stretched membrane, allowing dense objects like a length wise steel needle to float on water.
Thus, the hydrogen bonding in water creates __surface tension__, a cohesive force that enables one to slightly overfill a glass with water or allows denser objects, such as a lengthwise steel needle, to float on water
I will use [pV/T] in the state 1 = [pV/T] in the state 2.
State 1:
p = 1.0 atm
V = 25 liter
T = 100 + 273.15 = 373.15 K
State 2:
p = 19.71 mmHg * 1.atm / 760 mmHg = 0.0259atm
V= ?
T = 25 + 273.15 = 298.15 K
Application of the formula
1.0 atm * 25 liter / 373.15 k = 0.0259 atm * V / 298.15 K =>
V = [1.0atm * 25 liter / 373.15 K]*298.15K/0.0259atm = 771 liter
The concentration is 5 g/L.
Concentration = mass/volume = 10 g/2 L = 5 g/L
Answer:
Carbon dioxide, water, and sunlight
Explanation:
<h3>Answer:</h3>
89.6 L of O₂
<h3>Solution:</h3>
The balanced chemical equation is as,
CH₄ + 2 O₂ → CO₂ + 2 H₂O
As at STP, one mole of any gas (Ideal gas) occupies exactly 22.4 L of Volume. Therefore, According to equation,
44 g ( 1 mol) CO₂ is produced by = 44.8 L (2 mol) of O₂
So,
88 g CO₂ will be produced by = X L of O₂
Solving for X,
X = (88 g × 44.8 L) ÷ 44 g
X = 89.6 L of O₂