Answer:
The octopus is a member of the Cephalopod group. ... This demonstrates the third law of motion because when the octopus propels the jet of water out it creates a force that pushes the octopus forward.
Answer: 624 Hz
Explanation:
If the ratio of the inductive reactance to the capacitive reactance, is 6.72, this means that it must be satified the following expression:
ωL / 1/ωC = 6.72
ω2 LC = 6.72 (1)
Now, at resonance, the inductive reactance and the capacitive reactance are equal each other in magnitude, as follows:
ωo L = 1/ωoC → ωo2 = 1/LC
So, as we know the resonance frequency, we can replace LC in (1) as follows:
ω2 / ωo2 = 6.72
Converting the angular frequencies to frequencies, we have:
4π2 f2 / 4π2 fo2 = 6.72
Simplifying and solving for f, we have:
f = 240 Hz . √6.72 = 624 Hz
As the circuit is inductive, f must be larger than the resonance frequency.
Answer:
Explanation:
Call the bike on the right A
Call the bike on the left B
The car begins it's time when it passes A
4 minutes later, it passes B.
But B has moved in 4 minutes and that is the key to the problem.
How far has B moved.
t = 4 minutes = 4/60 hours = 1/15 of an hour.
d = ?
rate = 30 km / hr
d = r * t
d = 30 km/hr * 1/15 hours = 2 km
The distance between the bikes is 5 km.
So the car has traveled 5 - 2 = 3 km
d = 3 km
r = ?
t = 4 minutes = 1/15 hour
r = d/t = 3/(1/15)= 3 / 0.066666666 = 45 km/hr.
This loss of stable old ice has set up additional losses of sea ice cover each summer because the thinner younger ice is more easily melted during the recent warmer summers. Because of their dependence upon the sea ice for food, these changes can directly affect the carrying capacity of the Arctic for polar bears. Mark this as the brainliest answer please