Answer:
gidetgfddtgfft5f5f5f5d5f6guhuhug5xtdrd4s4d5d6v7g7h8n8b7v6v6
If you begin with the basic equation of a vertical parabola: y-k=a(x-h)^2, where (h,k) is the vertex, then that equation, when the vertex is (-3,-2), is
y + 2 = a (x + 3)^2. If we solve this for y, we get
y = a(x+3)^2 - 2. Thus, eliminate answers A and D. That leaves B, since B correctly shows (x+3)^2.
The answer is -3, because the negative sign is outside of the absolute value. If the problem looked like this |-3|, then the answer would be 3. To clarify, your answer is -3.
Answer:
Least positive integer divisible by the numbers 2, 4, and 7 is 28
Step-by-step explanation:
We can find the least positive integer divisible by the numbers 2, 4, and 7 by taking the LCM
First lets List all prime factors for each number.
Prime Factorization of 2
2 is prime => 
Prime Factorization of 4 is:
2 x 2 => 
Prime Factorization of 7 is:
7 is prime => 
For each prime factor, find where it occurs most often as a factor and write it that many times in a new list.
The new superset list is
2, 2, 7
Multiply these factors together to find the LCM.
LCM = 2 x 2 x 7 = 28