Answer: m = -2
Step-by-step explanation:
8(3m+5)=2m-4
24m + 40 = 2m - 4
24m - 2m = -40 - 4
22m = -44
m = - 44/ 22
m = -2
Hi there!
»»————- ★ ————-««
I believe your answer is:
m = 3
(7, -2)
»»————- ★ ————-««
Here’s why:
⸻⸻⸻⸻
The equation given is in point-slope form.
⸻⸻⸻⸻

⸻⸻⸻⸻
The '3' is in the 'm' spot.
The y value is '-2', (y -(-2)) and the 'x' value is 7.
The point of the line is (7, -2) and the slope is 3.
⸻⸻⸻⸻
»»————- ★ ————-««
Hope this helps you. I apologize if it’s incorrect.
Answer:
I'm pretty sure the answer is B
Step-by-step explanation:
sorry if I'm wrong
Answer:
one unit vector is ur=(-1/√3 ,1/√3 ,1/√3 )
Step-by-step explanation:
first we need to find a vector that is ortogonal to u and v . This vector r can be generated through the vectorial product of u and v , u X v :![r=u X v =\left[\begin{array}{ccc}i&j&k\\1&0&1\\0&1&1\end{array}\right] = \left[\begin{array}{ccc}0&1\\1&1\end{array}\right]*i + \left[\begin{array}{ccc}1&0\\1&1\end{array}\right]*j + \left[\begin{array}{ccc}1&0\\0&1\end{array}\right]*k = -1 * i + 1*j + 1*k = (-1,1,1)](https://tex.z-dn.net/?f=r%3Du%20X%20v%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C1%260%261%5C%5C0%261%261%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%261%5C%5C1%261%5Cend%7Barray%7D%5Cright%5D%2Ai%20%2B%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C1%261%5Cend%7Barray%7D%5Cright%5D%2Aj%20%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%2Ak%20%3D%20-1%20%2A%20i%20%2B%201%2Aj%20%2B%201%2Ak%20%3D%20%28-1%2C1%2C1%29)
then the unit vector ur can be found through r and its modulus |r| :
ur=r/|r| = 1/[√[(-1)²+(1)²+(1)²]] * (-1,1,1)/√3 =(-1/√3 ,1/√3 ,1/√3 )
ur=(-1/√3 ,1/√3 ,1/√3 )
Hi!
<h3>Expanded form is when we multiply each of the digits by how many 0s they have. </h3>
So 253 is (2 x 100) + (5 x 10) + (3 x 1).
17,000
400
9
(<u>17 x 10,000) + (4 x 100) + (9 x 1)</u>
<h2>The answer is C) (<u>17 x 10,000) + (4 x 100) + (9 x 1)</u> (which equals 17,409)</h2>
Hope this helps! :)
-Peredhel