Answer:
D. 9,700
Step-by-step explanation:
Answer:
Hi! The correct answer is x= -7/2
Step-by-step explanation:
Solve the rational equation by combining expressions and isolating the variable x.
Answer: There is not a good prediction for the height of the tree when it is 100 years old because the prediction given by the trend line produced by the regression calculator probably is not valid that far in the future.
Step-by-step explanation:
Years since tree was planted (x) - - - - height (y)
2 - - - - 17
3 - - - - 25
5 - - - 42
6 - - - - 47
7 - - - 54
9 - - - 69
Using a regression calculator :
The height of tree can be modeled by the equation : ŷ = 7.36X + 3.08
With y being the predicted variable; 7.36 being the slope and 3.08 as the intercept.
X is the independent variable which is used in calculating the value of y.
Predicted height when years since tree was planted(x) = 100
ŷ = 7.36X + 3.08
ŷ = 7.36(100) + 3.08
y = 736 + 3.08
y = 739.08
Forward prediction of 100 years produced by the trendline would probably give an invalid value because the trendline only models a range of 9 years prediction. However, a linear regression equation isn't the best for making prediction that far in into the future.
Answer:
12/7 or 1 5/7
Step-by-step explanation:
6 * 2 = 12
so
12/7 = 1 5/7
The complete question is
Find the volume of each sphere for the given radius. <span>Round to the nearest tenth
we know that
[volume of a sphere]=(4/3)*pi*r</span>³
case 1) r=40 mm
[volume of a sphere]=(4/3)*pi*40³------> 267946.66 mm³-----> 267946.7 mm³
case 2) r=22 in
[volume of a sphere]=(4/3)*pi*22³------> 44579.63 in³----> 44579.6 in³
case 3) r=7 cm
[volume of a sphere]=(4/3)*pi*7³------> 1436.03 cm³----> 1436 cm³
case 4) r=34 mm
[volume of a sphere]=(4/3)*pi*34³------> 164552.74 mm³----> 164552.7 mm³
case 5) r=48 mm
[volume of a sphere]=(4/3)*pi*48³------> 463011.83 mm³----> 463011.8 mm³
case 6) r=9 in
[volume of a sphere]=(4/3)*pi*9³------> 3052.08 in³----> 3052 in³
case 7) r=6.7 ft
[volume of a sphere]=(4/3)*pi*6.7³------> 1259.19 ft³-----> 1259.2 ft³
case 8) r=12 mm
[volume of a sphere]=(4/3)*pi*12³------>7234.56 mm³-----> 7234.6 mm³