(I know there isnt any real problem here to solve, but heres a tip on how to solve greatest to least with decimal problems)
1. Just because a number looks big, doesn't mean it is big
Example: 1.00000000000001 < 1.1
just look at the numbers ^ and dont just hastily read it over assuming that 1.1 is smaller because it "has less digits"
2. Negative numbers are... opposite. and they are less than positive numbers
-3.4 > -4.1
Why is this? Well, if you look on a line, with the point 0 in the middle, you can see that -3.4 is not as far away from 0 as -4.1 is. So the idea is to apply opposite logic for negative numbers
I hope these tips helped!! :D
 
        
                    
             
        
        
        
Answer:
Cool dude... very unique?
 
        
             
        
        
        
22  True   For all real Numbers A and B,  A  -   B   =    -B   +  A
23  True   For all real Numbers  P, Q, and R, P  -  Q  - R  =  P - R  - Q
24) True  For all real Numbers  X, Y, Z and (X   +  Y )  +  Z  =  Z   +  (X  +  Y)
 25) False  For all real Numbers M and N,  M/M * N = N/N ==> Example: 5/5  *  3  ≠   3/3  *  5
26) Examples: 
Counterexamples  =====>   5  - 0  = 5;   5/1   =  5  
5   -  3   ≠  3    -   5;   (5 -  3 )  -    2  ≠   5  -  (3   -  2 );    
6/3    ≠   3/6;   (24/6 )/2   ≠   24/ (6/ 2 )
Hope that helps!!!!                                         : )
 
        
             
        
        
        
It has to be an equation that adds up to an exponent of 3