Answer:
-1 and -6
Step-by-step explanation:
-1x-6=6
-1+-6=-7
Answer:
2.28% probability that a person selected at random will have an IQ of 110 or greater
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

What is the probability that a person selected at random will have an IQ of 110 or greater?
This is 1 subtracted by the pvalue of Z when X = 110. So



has a pvalue of 0.9772
1 - 0.9772 = 0.0228
2.28% probability that a person selected at random will have an IQ of 110 or greater
Re-upload the photo you posted because it isnt showing up :(
Answer:
The augmented matrix for the system of equations is
.
Step-by-step explanation:
This system consists in three equations with three variables (
,
,
).The augmented matrix of a system of equations is formed by the coefficients and constants of the system of linear equations. In this case, we conclude that the system of equations has the following matrix:
![\left[\begin{array}{cccc}0&2&-3&1\\7&0&5&8\\4&1&-3&6\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D0%262%26-3%261%5C%5C7%260%265%268%5C%5C4%261%26-3%266%5Cend%7Barray%7D%5Cright%5D)
The augmented matrix for the system of equations is
.