You need to know the time as well.
Answer:
, the minus meaning west.
Explanation:
We know that linear momentum must be conserved, so it will be the same before (
) and after (
) the explosion. We will take the east direction as positive.
Before the explosion we have
.
After the explosion we have pieces 1 and 2, so
.
These equations must be vectorial but since we look at the instants before and after the explosions and the bomb fragments in only 2 pieces the problem can be simplified in one dimension with direction east-west.
Since we know momentum must be conserved we have:

Which means (since we want
and
):

So for our values we have:

Answer
D. move a small magnet back and forth within a section of the coiled wire.
Explanation:
i put that for the test and i got it right
Answer:
Option 4
Explanation:
During heating actually heat transfer takes place from a body at higher temperature to a body at lower temperature and the heat transfer takes place until both attain the same temperature
Therefore heat transfer depends on the temperature of the systems
Now while comparing the thermal energies of the systems, if both the systems have same mass then the system which is at higher temperature has greater thermal energy when compared to the system which is at lower temperature
So in this case assuming that both the systems have same mass then the energy will leave the system with greater thermal energy and go into the system with less thermal energy as the system with greater thermal energy in this case will be at higher temperature and we are considering this assumption because thermal energy not only depends on temperature but also depends on mass of the system
Answer:
the magnitude of a uniform electric field that will stop these protons in a distance of 2 m is 10143.57 V/m or 1.01 × 10⁴ V/m
Explanation:
Given the data in the question;
Kinetic energy of each proton that makes up the beam = 3.25 × 10⁻¹⁵ J
Mass of proton = 1.673 × 10⁻²⁷ kg
Charge of proton = 1.602 × 10⁻¹⁹ C
distance d = 2 m
we know that
Kinetic Energy = Charge of proton × Potential difference ΔV
so
Potential difference ΔV = Kinetic Energy / Charge of proton
we substitute
Potential difference ΔV = ( 3.25 × 10⁻¹⁵ ) / ( 1.602 × 10⁻¹⁹ )
Potential difference ΔV = 20287.14 V
Now, the magnitude of a uniform electric field that will stop these protons in a distance of 2 m will be;
E = Potential difference ΔV / distance d
we substitute
E = 20287.14 V / 2 m
E = 10143.57 V/m or 1.01 × 10⁴ V/m
Therefore, the magnitude of a uniform electric field that will stop these protons in a distance of 2 m is 10143.57 V/m or 1.01 × 10⁴ V/m