Answer:
Where can I get a can opener? hahaha
To solve this exercise, we will first proceed to calculate the electric force given by the charge between the proton and the electron (it). From the Force we will use Newton's second law that will allow us to find the acceleration of objects. The Coulomb force between two charges is given as

Here,
k = Coulomb's constant
q = Charge of proton and electron
r = Distance
Replacing we have that,


The force between the electron and proton is calculated. From Newton's third law the force exerted by the electron on proton is same as the force exerted by the proton on electron.
The acceleration of the electron is given as



The acceleration of the proton is given as,



Answer:
C
Explanation:
An object in motion will stay in motion unless acted on by a net positive or negative force.
For answer A. If the object were to be in an orbit, it would inevitably accelerate due to it being acted on by the gravitational force from the object it is orbiting. At different points in the orbit, the object will move at different speeds and continuously transfer between kinetic and potential energy.
For answer B. The object would would not stop their motion. In order for the object to lose energy, it would have to transfer it through friction or through its interaction with a gravitational field.
For answer D. No energy is "required" to maintain constant motion unless the object is willingly fighting against a resistive force like friction or a graviational well.
Answer:
60.18 N
Explanation:
Given that:
The force applied on the sled = 100 N
Suppose, the angle between the sled rope and the ground = 53°
The horizontal force which acts in the horizontal direction can be expressed as:



But if the angle between the sled rope is parallel to the ground. Then, we use an angle on a straight line which is = 180°


= 100 × -1
= -100 N
Answer:

Explanation:
From the question we are told that:
Velocity 
Force of friction f = 0
Angle 
Generally the equation for Radius of curvature is mathematically given by


