Answer:

Step-by-step explanation:
To solve for <em>CD</em>, we can create a right triangle.
Where <em>CD</em> becomes the hypotenuse.
The length of the base of the triangle is 9 units.
The length of the height of the triangle is 5 units.
Apply Pythagorean theorem to solve for the hypotenuse.




Answer:
Expanded: (y-3)(y-3)(y-3)
Simplified: 
Step-by-step explanation:
Expanded: (y-3)(y-3)(y-3)
Simplified:



42/3 = 14
I think the unit rate is $14.
I hope this helps! :D
Answer:
Step-by-step explanation:

Answer:
ooooooooooooooooooooooooooooh
Step-by-step explanation:
oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooh