First, plug in 7 for m
|6 - 2(7)|
|6 - 14|
|-8|
since it's an absolute value, the answer will be positive
answer: 8
Step-by-step explanation:
horizontal lines will have a gradient(m) of 0
so if m=0 , the line is horizontal
formula to find m:
m=y2-y1 / x2-x1
insert coordinates into formula

As m=0 , therefore it is a horizonta line.
hope this helps..
Answer:
$8.50hr+ $100=x
Step-by-step explanation:
His $8.50 per hour is given to him plus $100 bonus.
Answer:
h(1.5) = 7.3 ft
h(10.3) = 24.9 ft
Step-by-step explanation:
Given the function h(d) = 2d + 4.3,
where:
h = height of the water in a fountain (in feet)
d = diameter of the pipe carrying the water (in inches)
<h3>h(1.5)</h3>
Substitute the input value of d = 1.5, into the function:
h(1.5) = 2(1.5) + 4.3
h(1.5) = 3 + 4.3
h(1.5) = 7 feet
The height of the water in a fountain is 7 feet when the diameter of the pipe is 1.5 inches.
<h3>h(10.3)</h3>
Substitute the input value of d = 10.3, into the function:
h(10.3) = 2(10.3) + 4.3
h(10.3) = 20.6 + 4.3
h(10.3) = 24.9 feet
The height of the water in a fountain is 24.9 feet when the diameter of the pipe is 10.3 inches.
<h3>Context of the solutions to h(1.5) and h(10.3):</h3>
The solutions to both functions show the relationship between the diameter of the pipe to the height of the water in a fountain. The height of the water in fountain increases relative to the diameter of the pipe. In other words, as the diameter or the size of the pipe increases or widens, the height of the water in a fountain also increases.
Answer:
Let's call:
f = price of 1 cup of dried fruit
a = price of 1 cup of almonds
In order to build the linear system, you need to consider that the total price of a bag is given by the sum of the price of cups times the number of cups in each bag, therefore:
Solve for a in first equation:
a = (6 - 3f) / 4
Then substitute in the second equation:
41/2 f + 6 · (6 - 3f) / 4 = 9
41/2 f + 9 - 9/2 f = 9
16 f = 0
f = 0
Now, substitute this value in the formula found for a:
a = (6 - 3·0) / 4
= 3/2 = 1.5
Hence, the cups of dried fruit are free and 1 cup of almond costs 1.5$
Step-by-step explanation: