The isotopes contribute to the average atomic mass based on their abundance. The result is that the "average" mass for the atoms of an element is dictated by the most abundant or common isotope. The average atomic mass for carbon is 12.0107 amu.
The atomic mass as displayed on the periodic table is a weighted average relative atomic mass of the naturally occuring isotopes of that element.
An isotope is an element with the same number of protons but a different number of neutrons
For example - Carbon naturally occurs in isotopes C12, C13 and C14 with abundances of 98.9% 1.1% and 'trace' respectively.
the average mass is then calculated by 12*98.9%+13*1.1% = 12.01g/mol
BAHHAHAJA WHY IS THIS SO FUNNY
Answer:
I think its false...........
Answer:
2) f = 0.707 Hz
Explanation:
Given m₁ = 1.0 kg , f₁ = 1.0 Hz
So using the equation
f₁ = ( 1 / 2 π ) * √K / m₁
Solve to determine K' constant of spring
K = m * ( 4 π ² * f ² )
K = 1.0 kg * ( 4 π ² 1.0² Hz )
K = 39.4784176
So given 2.0 kg the frequency can be find using formula
f₂ = ( 1 / 2 π ) * √K / m₂
f₂ = ( 1 / 2 π ) * √39.4784176 / 2.0 kg
f₂ = 0.707 Hz
From the formula for Electric Power, P = IV, P = V²/R
So the 100W compared to the 50W.
From P = IV. From the equation there is a direct relationship between P and I. More Power P means more Current, I.
From P = V²/R. From the equation, there is an inverse relationship
between P and R. Therefore more P means less R.
So from these assertions, the answer is:
(1) less resistance and draws more current