If the solution is treated as an ideal solution, the extent of freezing
point depression depends only on the solute concentration that can be
estimated by a simple linear relationship with the cryoscopic constant:
ΔTF = KF · m · i
ΔTF, the freezing point depression, is defined as TF (pure solvent) - TF
(solution).
KF, the cryoscopic constant, which is dependent on the properties of the
solvent, not the solute. Note: When conducting experiments, a higher KF
value makes it easier to observe larger drops in the freezing point.
For water, KF = 1.853 K·kg/mol.[1]
m is the molality (mol solute per kg of solvent)
i is the van 't Hoff factor (number of solute particles per mol, e.g. i =
2 for NaCl).
Answer: D. They are the coldest stars.
Explanation:
<span>92.96 million mi..........</span>
Answer: As Earth spins on its axis, we, as Earth-bound observers, spin past this background of distant stars. As Earth spins, the stars appear to move across our night sky from east to west, for the same reason that our Sun appears to “rise” in the east and “set” in the west.
Explanation:
Answer with Explanation:
We are given that
Mass of one cart,
Mass of second cart,
Initial velocity of one cart,
Initial velocity of second cart,
a.Total momentum,

b.Velocity of second cart,
=0
According to law of conservation of momentum
Initial momentum=Final momentum


