1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lesya [120]
2 years ago
7

A person has long hair hanging straight down from their head. A second person rubs a balloon with felt so that the balloon is ne

gatively charged, then brings it near the first person's hair without allowing the balloon to touch the hair. They notice that strands of the first person's hair are attracted to the balloon. The second person then rubs another balloon with plastic wrap so that it is positively charged, and again they notice that the balloon attracts strands of the first person's hair. Which is the best explanation for the attraction of the hair to the balloon
Physics
1 answer:
Vedmedyk [2.9K]2 years ago
4 0

Answer:

<em>The best explanation is that the first person is grounded to the earth, and his/her body either draws up negative charges from the earth, or tend to conducts negative charges to the earth, depending on the charge on the balloon.</em>

Explanation:

The earth is an infinite store for charges. In the first case where the second person brings a negatively charged balloon towards the first person, the negative charges on the balloon induces the first person's body to tend to attract the negative charges on the balloon through the first person's body to the positive charges within the earth. In the second case when again a positively charged balloon is brought near the first person's hair, the positive charges on the balloon induce the first person's body into drawing up negative charges from within the earth. This charges, and their opposite induced charges, create an attractive force between the hair strands and the balloons.

You might be interested in
FIGURE 2 shows a 1.5 kg block is hung by a light string which is wound around a smooth pulley of radius 20 cm. The moment of ine
Sindrei [870]

Answer:

At t = 4.2 s

Angular velocity: 6. 17 rad /s

The number of revolutions: 2.06

Explanation:

First, we consider all the forces acting on the pulley.

There is only one force acting on the pulley, and that is due to the 1.5 kg mass attached to it.

Therefore, the torque on the pulley is

\tau=Fd=mg\cdot R

where m is the mass of the block, g is the acceleration due to gravity, and R is the radius of the pulley.

Now we also know that the torque is related to angular acceleration α by

\tau=I\alpha

therefore, equating this to the above equation gives

mg\cdot R=I\alpha

solving for alpha gives

\alpha=\frac{mgR}{I}

Now putting in m = 1.5 kg, g = 9.8 m/s^2, R = 20 cm = 0.20 m, and I = 2 kg m^2 gives

\alpha=\frac{1.5\cdot9.8\cdot0.20}{2}\boxed{\alpha=1.47s^{-2}}

Now that we have the value of the angular acceleration in hand, we can use the kinematics equations for the rotational motion to find the angular velocity and the number of revolutions at t = 4.2 s.

The first kinematic equation we use is

\theta=\theta_0+\omega_0t+\frac{1}{2}\alpha t^2

since the pulley starts from rest ω0 = 0 and theta = 0; therefore, we have

\theta=\frac{1}{2}\alpha t^2

Therefore, ar t = 4.2 s, the above gives

\theta=\frac{1}{2}(1.47)(4.2)^2

\boxed{\theta=12.97}

So how many revolutions is this?

To find out we just divide by 2 pi:

\#\text{rev}=\frac{\theta}{2\pi}=\frac{12.97}{2\pi}\boxed{\#\text{rev}=2.06}

Or about 2 revolutions.

Now to find the angular velocity at t = 4.2 s, we use another rotational kinematics equation:

\omega^2=w^2_0+2\alpha(\Delta\theta)_{}

Since the pulley starts from rest, ω0 = 0. The change in angle Δθ we calculated above is 12.97. The value of alpha we already know to be 1.47; therefore, the above becomes:

\omega^2=0+2(1.47)(12.97)w^2=38.12\boxed{\omega=6.17.}

Hence, the angular velocity at t = 4.2 w is 6. 17 rad / s

To summerise:

at t = 4.2 s

Angular velocity: 6. 17 rad /s

The number of revolutions: 2.06

3 0
1 year ago
What will happen to the astronaut when the jets produce these four forces: 10N, 10N, 9N, 9N?
sukhopar [10]
The astronaut would go the opposite direction due to Newton’s third law of -10N, -10N, -9N, -9N

Let me know if this helped you, please rank this was the brainlist answer if possible, thanks!
6 0
3 years ago
What is the equation for an inelastic collision
abruzzese [7]
M1 v1 = (m1 + m2)v2.

All of the exponents should be lowered to the bottom right of the letters.
7 0
3 years ago
The best description of personality traits we have today is
Anettt [7]
Openness to experience, Neuroticism, agreeableness, Extroversion, Conscientiousness
3 0
2 years ago
Describe how pieces of rope move as waves pass
MaRussiya [10]
Well, as the waves move it moves the rope as if its trying to take shape of it. Since the rope it light it will move along the ocean and the ocean will keep pushing up on the rope. (even without the waves the water is pushing the rope up so it can take its shape)

Maybe that'll help
6 0
2 years ago
Other questions:
  • Marco is conducting an experiment. He knows the wave that he is working with has a wavelength of 32.4 cm. If he measures the fre
    7·2 answers
  • A planar loop consisting of seven turns of wire, each of which encloses 200 cm2, is oriented perpendicularly to a magnetic field
    15·2 answers
  • What is the definition of work in Physics?
    8·1 answer
  • Earth is the only planet able to support what
    13·2 answers
  • The spreading of waves behind an aperture ismore for long wavelengths and less for short wavelengths.less for long wavelengths a
    14·1 answer
  • What is momentum in physics?
    15·2 answers
  • The answer pleaseeeeeee
    9·1 answer
  • Explain why Pluto has been re-categorized as a dwarf planet.
    5·1 answer
  • A 2-kW resistance heater in a water heater runs for 3 hours to raise the water temperature to the desired level. Determine the a
    9·1 answer
  • Tres personas, A, B, C, jalan una caja con ayuda de cuerdas cuya masa es despreciable. Si la persona A aplica −3 en dirección ho
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!