The second matrix
represents the triangle dilated by a scale factor of 3.
Step-by-step explanation:
Step 1:
To calculate the scale factor for any dilation, we divide the coordinates after dilation by the same coordinated before dilation.
The coordinates of a vertice are represented in the column of the matrix. Since there are three vertices, there are 2 rows with 3 columns. The order of the matrices is 2 × 3.
Step 2:
If we form a matrix with the vertices (-2,0), (1,5), and (4,-8), we get
![\left[\begin{array}{ccc}-2&1&4\\0&5&-8\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%261%264%5C%5C0%265%26-8%5Cend%7Barray%7D%5Cright%5D)
The scale factor is 3, so if we multiply the above matrix with 3 throughout, we will get the matrix that represents the vertices of the triangle after dilation.
Step 3:
The matrix that represents the triangle after dilation is given by
![3\left[\begin{array}{ccc}-2&1&4\\0&5&-8\end{array}\right] = \left[\begin{array}{ccc}3(-2)&3(1)&3(4)\\3(0)&3(5)&3(-8)\end{array}\right] = \left[\begin{array}{ccc}-6&3&12\\0&15&-24\end{array}\right]](https://tex.z-dn.net/?f=3%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%261%264%5C%5C0%265%26-8%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%28-2%29%263%281%29%263%284%29%5C%5C3%280%29%263%285%29%263%28-8%29%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-6%263%2612%5C%5C0%2615%26-24%5Cend%7Barray%7D%5Cright%5D)
This is the second option.
Answer:
C or the bottom left one
Step-by-step explanation:
The answer choices are sufficiently far apart that you can work this backward. The sum will be ...
236,196*(1 + 1/3 + 1/9 + 1/27 + ...)
so a reasonable estimate can be given by an infinite series with a common ratio of 1/3. That sum is
236,196*(1/(1 - 1/3)) = 236,196*(3/2)
Without doing any detailed calculation, you know the best answer choice is ...
354,292
_____
There are log(236196/4)/log(3) + 1 = 11 terms* in the series, so the sum will be found to be 4(3^11 -1)/(3-1) = 2*(3^11-1) = 354,292.
Using the above approach (working backward from the last term), the sum will be 236,196*(1-(1/3)^11)/(1-(1/3)) = 236,196*1.49999153246 = 354,292
___
* If you just compute log(236196/4)/log(3) = 10 terms, then your sum comes out 118,096--a tempting choice. However, you must realize that the last term is larger than this, so this will not be the sum. (In fact, the sum is this value added to the last term.)
The answer is (-1/2, -3x)