Combination or composition, in particular.
Answer:
1) t=1.743 sec
2)Vo=61.388 m/sec
3)the x component of its velocity just be- fore it strikes the ground is the same as the initial velocity of the ball that is=61.388 m/sec
4)Vf=17.08 m/s
Explanation:
1)From second equation of motion we get
h=Vit+(1/2)gt^2
here in case(a): Vi=0 m/s,h=14.9m,,put these values in above equation to find the time the ball is in motion
14.9=(0)*t+(1/2)(9.8)t^2
t^2=14.9/4.9
t^2=3.040 sec
t=1.743 sec
2) s=Vo*t
Putting values we get
107=Vo*1.743
Vo=61.388 m/sec
3)the x component of its velocity just be- fore it strikes the ground is the same as the initial velocity of the ball that is=61.388 m/sec
4)From third equation of motion we know that
Vf^2-Vi^2=2gh
here Vi=0 m/s,h=14.9 m
Vf^2=Vi^2+2gh=0+2(9.8)(14.9)
Vf^2=292.04
Vf=17.08 m/s
Wavelength = speed / frequency
(345 m/s) / (20,000 Hz) = 0.017 m

Explanation:
The acceleration due to gravity g is defined as

and solving for R, we find that

We need the mass M of the planet first and we can do that by noting that the centripetal acceleration
experienced by the satellite is equal to the gravitational force
or

The orbital velocity <em>v</em> is the velocity of the satellite around the planet defined as

where <em>r</em><em> </em>is the radius of the satellite's orbit in meters and <em>T</em> is the period or the time it takes for the satellite to circle the planet in seconds. We can then rewrite Eqn(2) as

Solving for <em>M</em>, we get

Putting this expression back into Eqn(1), we get




Answer:
W = - 5.01 10¹⁰ J
Explanation:
Work is defined by the expression
W = ∫ F.dr
Where the blacks indicate vectors, in the case the force is radial and the distance is also radial, whereby the scalar producer is reduced to an ordinary product
W = ∫ F dr
W = G m₁m₂ ∫ 1 /r² dr
W = G m₁ m₂2(-1 / r)
We evaluate between the lower limits r = Re and upper r = ∞
W = G m₁m₂ (-1 / Re + 1 / ∞)
W = - G m₁ m₂ / Re
Let's calculate
W = - 6.67 10⁻¹¹ 800 5.98 10²⁴ / 6.37 10⁶
W = - 5.01 10¹⁰ J