1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jek_recluse [69]
3 years ago
5

Work is the product of force and an object's

Physics
2 answers:
Roman55 [17]3 years ago
8 0

Answer:

displacement

Explanation:

Neporo4naja [7]3 years ago
7 0

Answer:

C. displacement

Explanation:

You might be interested in
What is the best free energy source?<br> Nuclear<br> Solar<br> Natural Gas
Free_Kalibri [48]
Solar it is the cheapest and widely used energy source
4 0
2 years ago
NEED HELP ASAP
Dafna11 [192]

Answers:

a) -2.54 m/s

b) -2351.25 J

Explanation:

This problem can be solved by the <u>Conservation of Momentum principle</u>, which establishes that the initial momentum p_{o} must be equal to the final momentum p_{f}:  

p_{o}=p_{f} (1)  

Where:  

p_{o}=m_{1} V_{o} + m_{2} U_{o} (2)  

p_{f}=(m_{1} + m_{2}) V_{f} (3)

m_{1}=110 kg is the mass of the first football player

V{o}=-7 m/s is the velocity of the first football player (to the south)

m_{2}=75 kg  is the mass of the second football player

U_{o}=4 m/s is the velocity of the second football player (to the north)

V_{f} is the final velocity of both football players

With this in mind, let's begin with the answers:

a) Velocity of the players just after the tackle

Substituting (2) and (3) in (1):

m_{1} V_{o} + m_{2} U_{o}=(m_{1} + m_{2}) V_{f} (4)  

Isolating V_{f}:

V_{f}=\frac{m_{1} V_{o} + m_{2} U_{o}}{m_{1} + m_{2}} (5)

V_{f}=\frac{(110 kg)(-7 m/s) + (75 kg) (4 m/s)}{110 kg + 75 kg} (6)

V_{f}=-2.54 m/s (7) The negative sign indicates the direction of the final velocity, to the south

b) Decrease in kinetic energy of the 110kg player

The change in Kinetic energy \Delta K is defined as:

\Delta K=\frac{1}{2} m_{1}V_{f}^{2} - \frac{1}{2} m_{1}V_{o}^{2} (8)

Simplifying:

\Delta K=\frac{1}{2} m_{1}(V_{f}^{2} - V_{o}^{2}) (9)

\Delta K=\frac{1}{2} 110 kg((-2.5 m/s)^{2} - (-7 m/s)^{2}) (10)

Finally:

\Delta K=-2351.25 J (10) Where the minus sign indicates the player's kinetic energy has decreased due to the perfectly inelastic collision

6 0
3 years ago
What is true about energy that is added to a closed system?
Setler [38]

The correct answer is B

6 0
3 years ago
Read 2 more answers
A screen is placed 1.20m behind a single slit. The central maximum in the resulting diffraction pattern on the screen is 1.40cm
andrew11 [14]

Answer:

2.8 cm

Explanation:

y_1 = Separation between two first order diffraction minima = 1.4 cm

D = Distance of screen = 1.2 m

m = Order

Fringe width is given by

\beta_1=\dfrac{y_1}{2}\\\Rightarrow \beta_1=\dfrac{1.4}{2}\\\Rightarrow \beta_1=0.7\ cm

Fringe width is also given by

\beta_1=\dfrac{m_1\lambda D}{d}\\\Rightarrow d=\dfrac{m_1\lambda D}{\beta_1}

For second order

\beta_2=\dfrac{m_2\lambda D}{d}\\\Rightarrow \beta_2=\dfrac{m_2\lambda D}{\dfrac{m_1\lambda D}{\beta_1}}\\\Rightarrow \beta_2=\dfrac{m_2}{m_1}\beta_1

Distance between two second order minima is given by

y_2=2\beta_2

\\\Rightarrow y_2=2\dfrac{m_2}{m_1}\beta_1\\\Rightarrow y_2=2\dfrac{2}{1}\times 0.7\\\Rightarrow y_2=2.8\ cm

The distance between the two second order minima is 2.8 cm

8 0
2 years ago
Do thermohaline currents flow vertically or horizontally<br><br> A. Vertically<br> B. Horizontally
Shkiper50 [21]
B





M


‘’’’



Vujkbukbuvuvubkkbbiu
7 0
3 years ago
Other questions:
  • Pls answer these questions I beg u!! And use the diagram for answering the questions pls help!! I will make u the BRAINLIEST!!!
    6·1 answer
  • An 80 g, 40 cm long rod hangs vertically on a frictionless, horizontal axle passing through its center. A 15 g ball of clay trav
    7·1 answer
  • How to find the frictional force acting on an object (not the friction coefficient)? ...?
    6·1 answer
  • BRAINIEST BRAINIEST BRAINIEST BRAINIEST!!
    12·2 answers
  • 1. Sam walked 4 meters north, 5 meters east, and 4 meters south. What is his
    7·1 answer
  • A proton is traveling to the right at 2.0 * 107 m/s. It has a head on perfectly elastic collision with a carbon atom. The mass o
    9·2 answers
  • A 250 g air-track glider is attached to a spring with springconstant 4.0 N/m. Th damping constant due to air resistance is0.015
    5·1 answer
  • Air of temperature T[infinity] = 27 °C is being used to cool an engine. Consider a single cooling fin at a temperature of Ts = 5
    13·1 answer
  • A train traveling at 48 m/s begins to slow down as it approaches a bend in the tracks. If it travels around the bend at a speed
    15·1 answer
  • The lithosphere contains rocks, soils, and minerals.
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!