Answer:
The given vector can be represented in unit vector as

The magnitude of any vector
is given by

Applying values we get

We know that positive x axis in vertorial form is represented as

taking dot product of both the vector's we get

Answer:
10.93 rad/s
Explanation:
If we treat the student as a point mass, her moment of inertia at the rim is

So the system moment of inertia when she's at the rim is:

Similarly, we can calculate the system moment of inertia when she's at 0.456 m from the center

We can apply the law of angular momentum conservation to calculate the post angular speed when she's 0.456m from the center:


The value of impedance Z of the circuit, when the rate at which electrical energy is dissipated in the resistor is 316 w, is 508 ohms.
<h3>What is impedance Z of the circuit?</h3>
The impedance Z of the circuit is the ratio of voltage amplitude to the maximum current.

Here, <em>V </em>is voltage amplitude and<em> I</em> maximum current.
A resistor with R = 300 Ω and an inductor are connected in series across an ac source that has voltage amplitude 490V. The rate at which electrical energy is dissipated in the resistor is 316 W.
The rate at which electrical energy is dissipated in the resistor is the product of the resistance and the square of current. Thus,

The impedance Z of the circuit is,

Thus, the value of impedance Z of the circuit, when the rate at which electrical energy is dissipated in the resistor is 316 w, is 508 ohms.
Learn more about the impedance Z of the circuit here:
brainly.com/question/24225360
#SPJ4
Answer:
1.
2.
Explanation:
Polarizes axis can create two possible angles with the vertical.
first we have to find the intensity of first polarizer
which is given as



For a smaller angle for the first polarizer:
According to Malus Law



taking square root on both sides



For a larger angle for the first polarizer:
According to Malus Law


taking square root on both sides


