Most likely, the light wave will be absorbed by the wall. Without any information as to the size and color of the wall, the location and size of the hole, or the location of the light wave, this is a generalized probability problem. For all of the places the light could be, it's more likely that it hits the wall than the hole (if the hole is less than 50% of the area of the wall).
Answer:-4
Explanation:because
10protone +10
14 electrone-14
5 neutrones0 the result will be
10-14=-4
Explanation:
It is given that,
length of steel wire, l = 0.75 m
Mass of the wire, m = 12 g = 0.012 kg
Fundamental frequency, f = 120 Hz
We need to find the mass of the anvil (m'). The fundamental frequency is given by :

v is the speed of the mass
Speed is given by :

is the mass per unit length,

T is the tension in the wire,



T = 518.4 N
Tension in the wire, T = m' g


m' = 52.89 kg
So, the mass of the anvil is 52.89 kg. Hence, this is the required solution.
By definition we know that the force is the vector product of the vector of the current by the length with the magnetic field vector. The current in this case goes in a positive "Y" direction. If we assume that the magnetic field goes in the positive "K" direction, then the result will be in the positive "X" direction. Attached solution.
Incomplete question.The Complete question is here
A flat uniform circular disk (radius = 2.00 m, mass = 1.00 ✕ 102 kg) is initially stationary. The disk is free to rotate in the horizontal plane about a friction less axis perpendicular to the center of the disk. A 40.0-kg person, standing 1.25 m from the axis, begins to run on the disk in a circular path and has a tangential speed of 2.00 m/s relative to the ground.
a.) Find the resulting angular speed of the disk (in rad/s) and describe the direction of the rotation.
b.) Determine the time it takes for a spot marking the starting point to pass again beneath the runner's feet.
Answer:
(a)ω = 1 rad/s
(b)t = 2.41 s
Explanation:
(a) initial angular momentum = final angular momentum
0 = L for disk + L............... for runner
0 = Iω² - mv²r ...................they're opposite in direction
0 = (MR²/2)(ω²) - mv²r
................where is ω is angular speed which is required in part (a) of question
0 = [(1.00×10²kg)(2.00 m)² / 2](ω²) - (40.0 kg)(2.00 m/s)²(1.25 m)
0=200ω²-200
200=200ω²
ω = 1 rad/s
b.)
lets assume the "starting point" is a point marked on the disk.
The person's angular speed is
v/r = (2.00 m/s) / (1.25 m) = 1.6 rad/s
As the person and the disk are moving in opposite directions, the person will run part of a revolution and the turning disk would complete the whole revolution.
(angle) + (angle disk turns) = 2π
(1.6 rad/s)(t) + ωt = 2π
t[1.6 rad/s + 1 rad/s] = 2π
t = 2.41 s