Answer:
Below
Step-by-step explanation:
● x-20 = y+20 (1)
● 2(y-22) = x+22 (2)
This is a system of simulataneous equations
Let's simplify the expressions first
● x -20 = y + 20 (1)
Add 20 to both sides
● x -20 + 20 = y+20 +20
● x = y + 40 (1)
● 2(y-22) = x+22 (2)
● 2y - 44 = x +22
Substrat 22 from both sides
● 2y-44-22 = x+22-22
● 2y -66 = x (2)
This is the new system:
● x = y+40 (1)
● x = 2y-66 (2)
Substract (2) from (1)
● x-x = y+40-(2y-66)
● y+40-2y+66 = 0
● -y +106 = 0
● y = 106
Replace y with 106 in (1)
● x = y +40
● x = 106+40
● x = 146
So the solutions are (146,106)
Answer:
-2x - 5 (lesser than or equal to) 15
Answer:
there are no signs between the x and y and constant
it could be
2x+5y=15
2x+5y=-15
-2x+5y=15
2x-5y=15
for ax+by=c, the equation of a line paralell to that is
ax+by=d where a=a, b=b, and c and d are constants
(for this answer, I'm going to use 2x+5y=15)
given 2x+5y=15, the equation of a line paralell to that is 2x+5y=d
to find d, subsitute the point (4,-2), basically put 4 in for x and -2 for y to get the constant
2x+5y=d
2(4)+5(-2)=d
8-10=d
-2=d
the eqaution is 2x+5y=-2 (Only if the original equation is 2x+5y=-15
pls mark me brainlest
Answer:
A solution curve pass through the point (0,4) when
.
There is not a solution curve passing through the point(0,1).
Step-by-step explanation:
We have the following solution:

Does any solution curve pass through the point (0, 4)?
We have to see if P = 4 when t = 0.




A solution curve pass through the point (0,4) when
.
Through the point (0, 1)?
Same thing as above




No solution.
So there is not a solution curve passing through the point(0,1).