The answer is 1/8. That is the answer for this question.
Answer:

Step-by-step explanation:
Given
2 number die
Required
P(Sum = 4)
The sample space of 2 die is:


The pairs that adds up to 4 are:


So, the probability is:


Answer:
13a² - 39a + 46
Step-by-step explanation:
To find g(a-2)+3g(2a), find each part using the function g(x)=x²-5x+8.
g(a-2) = (a-2)²-5(a-2)+8 = a² - 4a + 4-5a + 10+8 = a² - 9a + 22
3g(2a) = 3{(2a)²-5(2a)+8} = 3{ 4a² - 10a + 8} = 12a² - 30a + 24
Combine the values to find g(a-2)+3g(2a).
g(a-2)+3g(2a) = (a² - 9a + 22) + (12a² - 30a + 24) = 13a² - 39a + 46
Answer: see proof below
<u>Step-by-step explanation:</u>
Use the Double Angle Identity: sin 2Ф = 2sinФ · cosФ
Use the Sum/Difference Identities:
sin(α + β) = sinα · cosβ + cosα · sinβ
cos(α - β) = cosα · cosβ + sinα · sinβ
Use the Unit circle to evaluate: sin45 = cos45 = √2/2
Use the Double Angle Identities: sin2Ф = 2sinФ · cosФ
Use the Pythagorean Identity: cos²Ф + sin²Ф = 1
<u />
<u>Proof LHS → RHS</u>
LHS: 2sin(45 + 2A) · cos(45 - 2A)
Sum/Difference: 2 (sin45·cos2A + cos45·sin2A) (cos45·cos2A + sin45·sin2A)
Unit Circle: 2[(√2/2)cos2A + (√2/2)sin2A][(√2/2)cos2A +(√2/2)·sin2A)]
Expand: 2[(1/2)cos²2A + cos2A·sin2A + (1/2)sin²2A]
Distribute: cos²2A + 2cos2A·sin2A + sin²2A
Pythagorean Identity: 1 + 2cos2A·sin2A
Double Angle: 1 + sin4A
LHS = RHS: 1 + sin4A = 1 + sin4A 