Answer: y(t)= 1/π^2 sin(6*π^2*t)
Explanation: In order to solve this problem we have to consider the general expression for a harmonic movement given by:
y(t)= A*sin (ω*t +φo) where ω is the angular frequency. A is the amplitude.
The data are: ν= 3π; y(t=0)=0 and y'(0)=6.
Firstly we know that 2πν=ω then ω=6*π^2
Then, we have y(0)=0=A*sin (6*π^2*0+φo)= A sin (φo)=0 then φo=0
Besides y'(t)=6*π^2*A*cos (6*π^2*t)
y'(0)=6=6*π^2*A*cos (6*π^2*0)
6=6*π^2*A then A= 1/π^2
Finally the equation is:
y(t)= 1/π^2 sin(6*π^2*t)
<span>The atomic number of
a neutral atom is equal to the number of protons and the number of electrons of
the atom. The atomic weight meanwhile is equal to the sum of the number of
protons and number of neutrons. In this case, the number of protons is equal to 26. The number of neutrons hence is 30. </span>
Answer: The second option.When
the current flows up the wire, the magnetic field flows out on the left
side of the wire and in on the right side of the wire.Explanation:
The first figure that I copy here with is the figure corresponding to this question.
The thumb is pointing upward.
The rule is that the thumb aims to the direction of the flow of current and the other fingers give the field lines.
The second figure that I attach is a free image from internet and it shows the direction of both the current and the fiedl lines.
So, the conclusion is that
the current goes upward the wire and the field lines go out of the paper (screen) for the points to the left of the wire and in on the right side of the wire.
Answer: Technician B
Explanation: In manual cars,the clutch safety is designed to stop the vehicle from moving when you start the gnition. It prevents power from flowing into the circuit . This is found in the pedal mechanism of cars so depressing the clutch pedal will likely cause a defective in the clutch safety. You will begin to perceive the clutch burning and white fumes coming out from the pedal.