Answer:
a

b

Explanation:
From the question we are told that
The diameter is 
Generally the radius electron orbit is mathematically represented as

=> 
This radius can also be represented mathematically as

Here n is the quantum number and
is the Bohr radius with a value

So

=> 
Generally the angular momentum of the electron is mathematically represented as

Here h is the Planck constant and the value is 
m is the mass of the electron with values 
So


Air resistance is ignored.
g = 9.8 m/s².
At maximum height, the vertical velocity is zero.
Let h = the maximum height reached.
Let u = the vertical launch velocity.
Because ot takes 5.0 seconds to reach maximum height, therefore
(u m/s) - (9.8 m/s²)*(5 s) = 0
u = 49 m/s
The maximum height reached is
h = (49 m/s)*(5 s) - (1/2)*(9.8 m/s²)*(5 s)²
= 122.5 m
Answer: 122.5 m
Answer:
1
The arrow with greater impart is Arrow B
2
The both arrows will feel the same impulse
Explanation:
1. Arrow B since
it used more force to stop itself in a shorter distance.
2. They should feel the same impulse since the both had the same momentum 
Answer: Katherine Johnson's knowledge of (mathematics) was instrumental in the return of the Apollo astronauts from the Moon to Earth.
Answer:
we go up the ramp there is a point where the beam is reflected inside the block, we carefully step back to the point where the beam is horizontal, we measure this angle which is our critical angle.
Explanation:
To design the experiment of measuring the critical angle, we describe the phenomenon, when the light passes from a medium with a higher refractive index to one with a lower index, it separates from the normal one and the Critical Angle is defined as the Angle for which the refraction occurs at 90º
n₂ sin θ₂ = n₁ sin 90
n₁ / n₂ = sin θ₂
As we can see, we have to measure the angle with which the laser touches the exit surface of the glass block.
Design of the experiment:
We place the glass block on the ramp and at the top we hit the conveyor for half the angle, we climb the block on the ramp and see that the angle of incidence of lightning on the exit face changes, part of the beam comes out of the glass , we see it by dispersion in the particles of dirty in the air; Maybe the conveyor or the laser should be moved slightly so that the beam touches the point of origin on the conveyor.
When we go up the ramp there is a point where the beam is reflected inside the block, we carefully step back to the point where the beam is horizontal, we measure this angle which is our critical angle.