Subtract
6
6
from both sides of the equation.
x
2
−
7
x
=
−
6
x
2
-
7
x
=
-
6
To create a trinomial square on the left side of the equation, find a value that is equal to the square of half of
b
b
.
(
b
2
)
2
=
(
−
7
2
)
2
(
b
2
)
2
=
(
-
7
2
)
2
Add the term to each side of the equation.
x
2
−
7
x
+
(
−
7
2
)
2
=
−
6
+
(
−
7
2
)
2
x
2
-
7
x
+
(
-
7
2
)
2
=
-
6
+
(
-
7
2
)
2
Simplify the equation.
Tap for more steps...
x
2
−
7
x
+
49
4
=
25
4
x
2
-
7
x
+
49
4
=
25
4
Factor the perfect trinomial square into
(
x
−
7
2
)
2
(
x
-
7
2
)
2
.
(
x
−
7
2
)
2
=
25
4
(
x
-
7
2
)
2
=
25
4
Solve the equation for
x
x
.
Tap for more steps...
x
=
6
,
1
The answer is 6.375 hope it help
Answer:
54 = 2 × 3 × 3 × 3 = 2 × 3³
![f(x) = 7(\sqrt[3]{54})^x](https://tex.z-dn.net/?f=%20f%28x%29%20%3D%207%28%5Csqrt%5B3%5D%7B54%7D%29%5Ex%20)
![f(x) = 7(\sqrt[3]{3^3 \times 2})^x](https://tex.z-dn.net/?f=%20f%28x%29%20%3D%207%28%5Csqrt%5B3%5D%7B3%5E3%20%5Ctimes%202%7D%29%5Ex%20)
![f(x) = 7(3\sqrt[3]{2})^x](https://tex.z-dn.net/?f=%20f%28x%29%20%3D%207%283%5Csqrt%5B3%5D%7B2%7D%29%5Ex%20)
Initial value: x = 0
![f(0) = 7(3\sqrt[3]{2})^0](https://tex.z-dn.net/?f=%20f%280%29%20%3D%207%283%5Csqrt%5B3%5D%7B2%7D%29%5E0%20)


The initial value is 7.
The domain is all real numbers.
The range is all real numbers greater than zero.