To put an equation into (x+c)^2, we need to see if the trinomial is a perfect square.
General form of a trinomial: ax^2+bx+c
If c is a perfect square, for example (1)^2=1, 2^2=4, that's a good indicator that it's a perfect square trinomial.
Here, it is, because 1 is a perfect square.
To ensure that it's a perfect square trinomial, let's look at b, which in this case is 2.
It has to be double what c is.
2 is the double of 1, therefore this is a perfect square trinomial.
Knowing this, we can easily put it into the form (x+c)^2.
And the answer is: (x+1)^2.
To do it the long way:
x^2+2x+1
Find 2 numbers that add to 2 and multiply to 1.
They are both 1.
x^2+x+x+1
x(x+1)+1(x+1)
Gather like terms
(x+1)(x+1)
or (x+1)^2.
Answer: 6 cm
Step-by-step explanation:
6 cm is the radius because half the diameter is the radius
The value of sin-1(1) is negative startfraction pi over 2 endfraction, startfraction -pi over 2 endfraction.
<h3>What is the value of sin (π/2)?</h3>
The value of sin (π/2) is equal to the number 1. The value of the sin-1(1) has to be find out.
Suppose the value of this function is <em>x</em>. Thus,

Solve it further,
......1
The value of sin (π/2) and -sin (-π/2) is equal to 1 such that,

Put this value in the equation 1,

Thus, the range will be,

Thus, the value of sin-1(1) is negative startfraction pi over 2 endfraction, startfraction -pi over 2 endfraction.
Learn more about the sine values here;
brainly.com/question/10711389
1. 15/2 | 2. 1 … if you need examples just reply here