Answer:
Perfectly inelastic collision
Explanation:
There are two types of collision.
1. Elastic collision : When the momentum of the system and the kinetic energy of the system is conserved, the collision is said to be elastic. For example, the collision of two atoms or molecules are considered to be elastic collision.
2. Inelastic collision: When the momentum the system is conserved but the kinetic energy is not conserved, the collision is said to be inelastic. For example, collision of a ball with the mud.
For a perfectly elastic collision, the two bodies stick together after collision.
Here, the meteorite collide with the Mars and buried inside it, the collision is said to be perfectly inelastic. here the kinetic energy of a body lost completely during the collision.
<h2>Answer: Light waves have a redshift due to the Doppler effect
</h2>
The astronomer Edwin Powell Hubble observed several celestial bodies, and when obtaining the spectra of distant galaxies he observed the spectral lines were displaced towards the red (red shift), whereas the nearby galaxies showed a spectrum displaced to the blue.
From there, Hubble deduced that the farther the galaxy is, the more redshifted it is in its spectrum. <u>The same happens with the stars and this phenomenom is known as the Doppler effect.
</u>
This phenomenon refers to the change in a wave perceived frequency (or wavelength=color) when the emitter of the waves, and the receiver (or observer in the case of light) move relative to each other. For example, as a star moves away from the Earth, its espectrum turns towards the red.
Answer:
Explanation:
Let the intensity of unpolarised light be I₀ . After passing through the first polarising filter , the intensity is I₀ / 2 .
After second filter , the intensity will be I₀ / 2 x cos²45 = I₀ / 4
After third filter , the intensity will be I₀ / 4 x cos²45 = I₀ / 8 .
So,
1 / 8 the of initial light passes through the last filter .