Archimedes found a piece of gold and a piece of silver with exactly the same mass. He dropped the gold into a bowl filled to the brim with water and measured the volume of water that spilled out. Then he did the same thing with the piece of solver. Although both metals had the same mass, the silver gad a larger volume; therefore, it displaced more water than the gold did. That's because the silver was less dense than gold. Afterwards he applied the same method to the crown for the king he served who had got a new crown from a jeweler who gave it to him. Archimedes found a piece of pure gold that had the same mass as the crown. He placed the pure gold chuck and the crown in water, one at a time. The crown displaced more water the piece of gold. Therefore, its density was less than pure gold.
Answer:
B. The escape speed of the Moon is less than that of the Earth; therefore, less energy is required to leave the Moon.
Explanation:
Since the speed required to escape from the gravitational attraction of the Moon is less than the speed required to escape from the gravitational attraction of the Earth, less energy is required to travel from the Moon to the Earth, than is required to travel from the Earth to the Moon. This is because the kinetic energy is directly proportional to the square of the velocity.
Answer:
it is to do with the static electricity produced by using the comb
Well, in order to figure out the answer is to divide until you figure out how many miles they went per second. If it takes 5 seconds to reach 50 miles per hour it took 10 seconds per every 10 miles meaning each mile took 1 second. (Not actually possible but the answer) So, If it finished a 100 mile trip in 2 hours it took an hour for 50 miles. If it took 1 hour for 50 miles divide 60/50 which gets you 1.2 so it took 1.2 miles per minute meaning the car went 120 miles per hour I believe. I hope this helps :)