IV - Temperature
DV - Light intensity
Answer:

Explanation:
Potential energy is minus the integral of Fdx. Doing the integration yields:



so


Now for x=3.0m


Answer:
Available energy = 35 x 10⁶ J
Explanation:
Given:
Amount of energy (Q) = 21 gj = 21 x 10⁹ J
Temperature T1 = 600 k
Temperature T0 = 27 + 273 = 300k
Find:
Available energy
Computation:
Available energy = Q[1/T0 - 1/T1]
Available energy = 21 x 10⁹ J[1/300 - 1/600]
Available energy = 35 x 10⁶ J
A similar but separate notion is that of velocity, which the rate of change<span> of </span>position<span>. Example . If p(t) is the </span>position<span> of an </span>object<span> moving on a number line at time t (measured in minutes, say), then the average </span>rate of change<span> of p(t) is the average velocity of the </span>object<span>, measured in units per minute.</span>