Solve triangle ABC, when A= 6, B=10 and c=12
1 answer:
Use cosine rule,
cos(A)=(b^2+c^2-a^2)/(2bc)
=(10^2+12^2-6^2)/(2*10*12)
=13/15
A=29.926 degrees.................................(A)
cos(B)=(c^2+a^2-b^2)/(2ca)
=(12^2+6^2-10^2)/(2*12*6)
=5/9
B=56.251 degrees.................................(B)
cos(C)=(a^2+b^2-c^2)/(2ab)
=(6^2+10^2-12^2)/(2*6*10)
=-1/15
C=93.823 degrees.................................(C)
Check:29.926+56.251+93.823=180.0 degrees....ok
You might be interested in
Answer:
I guess it is the Answer C
Answer:
762 raffle tickets
Step-by-step explanation:
16×9.32= 149.12
34×9.32= 316.88
3×9.32= 27.96
4×9.32= 37.28
add them all up= 531.24
531.24-150=381.24
381.24÷.50=762.48
answer: 762 raffle tickets
I believe about two thirds
Answer:
Solution given:
Since the given triangle is isosceles and right angled triangle
perpendicular [p]=base[b]=x
hypotenuse [h]=6
we have
by using Pythagoras law
p²+b²=h²
x²+x²=6²
2x²=36
x²=36/2
x²=18
x=
<u>x</u>=
The answer is 70.
5 + 2 = 7
7 x 10 = 70