Solve triangle ABC, when A= 6, B=10 and c=12
1 answer:
Use cosine rule,
cos(A)=(b^2+c^2-a^2)/(2bc)
=(10^2+12^2-6^2)/(2*10*12)
=13/15
A=29.926 degrees.................................(A)
cos(B)=(c^2+a^2-b^2)/(2ca)
=(12^2+6^2-10^2)/(2*12*6)
=5/9
B=56.251 degrees.................................(B)
cos(C)=(a^2+b^2-c^2)/(2ab)
=(6^2+10^2-12^2)/(2*6*10)
=-1/15
C=93.823 degrees.................................(C)
Check:29.926+56.251+93.823=180.0 degrees....ok
You might be interested in
Answer:
35,66
Step-by-step explanation:
Perimeter:
(5.5+12)*2
=17.5*2
=35m
Area:
5.5*12
=66 sq. metres
Option no. B
square root of 110 yd
B.) 22.5 degrees I think is the correct answer.
Answer:$17
Step-by-step explanation:
x/20=15/100 then solve for x