To solve by substitution, you need to fill in the value for either x or y. Since y = x + 5, you already have the y value. It's x + 5. Now you need to find x before you can go any further. So let's take 5x + y = 3 and fill x + 5 in for y.
5x + y = 5
5x + x + 5 = 3
Now solve for x.
5x + x + 5 = 3
6x + 5 = 3
6x = 3 - 5
6x = -2
x = -2/6 or -0.33
Now solve x + 5 for y.
y = x + 5
y = -0.33 + 5
y = 4.67
So x = -0.33 and y = 4.67
Answer:
a:5√3+3√5
b:4(√2+√7)
Step-by-step explanation:
Used photomath witch is an app that takes pictures of equations and solves them. 100% recommend

-------------------------------------
Divide by factor of 4.
-------------------------------------
<em>*Or divide by the factor of 2 twice</em>


-------------------------------------
Divide by factor of 13.
-------------------------------------


-------------------------------------
Combine into single fraction.
-------------------------------------

--------------------------------------------------------------------------
Answer: The factors are 2, 4 and 13--------------------------------------------------------------------------
Answer:

g(t) = 0
And
The differential equation
is linear and homogeneous
Step-by-step explanation:
Given that,
The differential equation is -

![e^{t}y' + (9t - \frac{1}{t^{2} + 81 } )y = 0\\e^{t}y' + (\frac{9t(t^{2} + 81 ) - 1}{t^{2} + 81 } )y = 0\\e^{t}y' + (\frac{9t^{3} + 729t - 1}{t^{2} + 81 } )y = 0\\y' + [\frac{9t^{3} + 729t - 1}{e^{t}(t^{2} + 81) } ]y = 0](https://tex.z-dn.net/?f=e%5E%7Bt%7Dy%27%20%2B%20%289t%20-%20%5Cfrac%7B1%7D%7Bt%5E%7B2%7D%20%2B%2081%20%7D%20%29y%20%3D%200%5C%5Ce%5E%7Bt%7Dy%27%20%2B%20%28%5Cfrac%7B9t%28t%5E%7B2%7D%20%2B%2081%20%29%20-%201%7D%7Bt%5E%7B2%7D%20%2B%2081%20%7D%20%29y%20%3D%200%5C%5Ce%5E%7Bt%7Dy%27%20%2B%20%28%5Cfrac%7B9t%5E%7B3%7D%20%2B%20729t%20%20-%201%7D%7Bt%5E%7B2%7D%20%2B%2081%20%7D%20%29y%20%3D%200%5C%5Cy%27%20%2B%20%5B%5Cfrac%7B9t%5E%7B3%7D%20%2B%20729t%20%20-%201%7D%7Be%5E%7Bt%7D%28t%5E%7B2%7D%20%2B%2081%29%20%7D%20%5Dy%20%3D%200)
By comparing with y′+p(t)y=g(t), we get

g(t) = 0
And
The differential equation
is linear and homogeneous.
Answer:
x=0, -5/3
Step-by-step explanation: