1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sesenic [268]
3 years ago
5

What is the answer to m+4=-12

Mathematics
1 answer:
Hunter-Best [27]3 years ago
8 0
Hey there!

You need to get m by itself. So subtract 4 on each side. You get m=-16. (-12-4 is the same as -12+-4). Since m is by itself, this is the answer: m=-16.

I hope this helps!
You might be interested in
<img src="https://tex.z-dn.net/?f=x%20%2B%20y%20%20%3D%2014%5C%5C%202x%20%2B%204y%20%3D%2018" id="TexFormula1" title="x + y = 1
alexgriva [62]

Answer:

x = 19, y = -5

Step-by-step explanation:

x + y = 14  => x= 14-y

2x + 4y = 18  => 2(x+2y)=18  => x+2y=9

x+2y=9 => (14 - y) + 2y = 9

14 + y = 9  => y = -5

x + (-5) = 14  => x=19

5 0
3 years ago
Which of the following pairs of functions are inverses of each other ​
Ghella [55]

Option (A) represents the function and its inverse of a function option (A) is correct.

<h3>What is a function?</h3>

It is defined as a special type of relationship, and they have a predefined domain and range according to the function every value in the domain is related to exactly one value in the range.

We have a function and inverse of a function shown in the picture.

Checking for option (A):

\rm f(x) = \dfrac{x}{4}+10 \ \ \ and \  \ \ g(x)  = 4x -10

Taking f(x):

\rm f(x) = \dfrac{x}{4}+10

To find the inverse of a function interchange the x and y variables:

f(x) → x

x  → g(x)

\rm x = \dfrac{g(x)}{4}+10

Solving:

4x = g(x) + 10

g(x) = 4x - 10

Similarly, we can find the inverse of a function.

Thus, option (A) represents the function and its inverse of a function option (A) is correct.

Learn more about the function here:

brainly.com/question/5245372

#SPJ1

8 0
2 years ago
Read 2 more answers
First question, thanks. I believe there should be 3 answers
zysi [14]

Given: The following functions

A)cos^2\theta=sin^2\theta-1B)sin\theta=\frac{1}{csc\theta}\begin{gathered} C)sec\theta=\frac{1}{cot\theta} \\ D)cot\theta=\frac{cos\theta}{sin\theta} \\ E)1+cot^2\theta=csc^2\theta \end{gathered}

To Determine: The trigonometry identities given in the functions

Solution

Verify each of the given function

\begin{gathered} cos^2\theta=sin^2\theta-1 \\ Note\text{ that} \\ sin^2\theta+cos^2\theta=1 \\ cos^2\theta=1-sin^2\theta \\ Therefore \\ cos^2\theta sin^2\theta-1,NOT\text{ }IDENTITIES \end{gathered}

B

\begin{gathered} sin\theta=\frac{1}{csc\theta} \\ Note\text{ that} \\ csc\theta=\frac{1}{sin\theta} \\ sin\theta\times csc\theta=1 \\ sin\theta=\frac{1}{csc\theta} \\ Therefore \\ sin\theta=\frac{1}{csc\theta},is\text{ an identities} \end{gathered}

C

\begin{gathered} sec\theta=\frac{1}{cot\theta} \\ note\text{ that} \\ cot\theta=\frac{1}{tan\theta} \\ tan\theta cot\theta=1 \\ tan\theta=\frac{1}{cot\theta} \\ Therefore, \\ sec\theta\ne\frac{1}{cot\theta},NOT\text{ IDENTITY} \end{gathered}

D

\begin{gathered} cot\theta=\frac{cos\theta}{sin\theta} \\ Note\text{ that} \\ cot\theta=\frac{1}{tan\theta} \\ cot\theta=1\div tan\theta \\ tan\theta=\frac{sin\theta}{cos\theta} \\ So, \\ cot\theta=1\div\frac{sin\theta}{cos\theta} \\ cot\theta=1\times\frac{cos\theta}{sin\theta} \\ cot\theta=\frac{cos\theta}{sin\theta} \\ Therefore \\ cot\theta=\frac{cos\theta}{sin\theta},is\text{ an Identity} \end{gathered}

E

\begin{gathered} 1+cot^2\theta=csc^2\theta \\ csc^2\theta-cot^2\theta=1 \\ csc^2\theta=\frac{1}{sin^2\theta} \\ cot^2\theta=\frac{cos^2\theta}{sin^2\theta} \\ So, \\ \frac{1}{sin^2\theta}-\frac{cos^2\theta}{sin^2\theta} \\ \frac{1-cos^2\theta}{sin^2\theta} \\ Note, \\ cos^2\theta+sin^2\theta=1 \\ sin^2\theta=1-cos^2\theta \\ So, \\ \frac{1-cos^2\theta}{sin^2\theta}=\frac{sin^2\theta}{sin^2\theta}=1 \\ Therefore \\ 1+cot^2\theta=csc^2\theta,\text{ is an Identity} \end{gathered}

Hence, the following are identities

\begin{gathered} B)sin\theta=\frac{1}{csc\theta} \\ D)cot\theta=\frac{cos\theta}{sin\theta} \\ E)1+cot^2\theta=csc^2\theta \end{gathered}

The marked are the trigonometric identities

3 0
1 year ago
???? i am confusion ????
Bogdan [553]

Answer:

<h2>x = 4.8</h2>

Step-by-step explanation:

\dfrac{x}{-12}=-0.4\qquad\text{multiply both sides by (-12)}\\\\-12\!\!\!\!\!\diagup^1\cdot\dfrac{x}{-12\!\!\!\!\!\diagup_1}=(-12)(-0.4)\\\\x=4.8

7 0
3 years ago
Read 2 more answers
lila compro cuatro pares de pantalones azules q $32 cada uno. cuánto dinero le pago lila al empleado?​
trasher [3.6K]

Answer:

128

Step-by-step explanation:

32 x 4 = 128

o

32 + 32 + 32 + 32 = 128

8 0
3 years ago
Other questions:
  • Resolve the following into factor ab+ac-ad​
    9·2 answers
  • What is the factorization of 3x^2-8x+5
    8·1 answer
  • The sum of 86, 68, and 38 is 192. What else do you know about the sum of 68, 38, and 86?
    9·1 answer
  • James has 16 balloons. 1/4 of his balloons are red. how many red balloons does he hav
    14·2 answers
  • Five hundred randomly selected working adults living in Calgary, Canada were asked how long, in minutes, their typical daily com
    10·1 answer
  • I am a number greater than 40,000 and less than 60,000. My ones digit and tens digit are the same. My ten-thousands digit is 1 l
    12·1 answer
  • Maria deposited $5,700 in an account that earns 8% simple interest. Maria made no withdrawals or deposits. What will be the tota
    10·1 answer
  • The distance from Point C to the tower at Point A is 1.2 miles, while the distance from Point C to the tower at Point
    10·1 answer
  • Find the value of x<br> -3x - 5 = 16
    9·1 answer
  • O Here is a list of numbers:<br> 19, 4, 7, 2, 10, 5, 19, 2, 12<br> State the median.
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!