Answer:
Composed of a phospholipid bilayer with embedded proteins, the plasma membrane is selectively permeable to ions and organic molecules and regulates the movement of substances in and out of cells. The membrane also maintains the cell potential.
Explanation:
(see above)
At time t = 273.15 °C, the x-intercept occurs. According to Charles' law, an ideal gas's volume decreases as its temperature rises. At t = 273.15 °C, the graph's x-intercept, volume approaches zero.
<h3>Charles law experiment: what is it?</h3>
Describe the Charles Law experiment. Gases have a tendency to expand when heated, according to Charles' law (sometimes referred to as the law of volumes), an experimental gas law. The Kelvin temperature and the volume will be directly proportional when the pressure on a sample of the a dry gas is held constant, according to a current interpretation of Charles's law.
<h3>Which laws—Charles and Boyles—have similarities?</h3>
Boyle's law is formulated for systems with constant temperature, whereas Charles' law is formulated for systems with constant pressure.
<h3>To know more about Charles law visit:</h3>
brainly.com/question/16927784
#SPJ13
Answer:
(a) 1s2 2s1
Explanation:
Electron configurations of atoms are in their ground state when the electrons completely fill each orbital before starting to fill the next orbital.
<h3><u>
Understanding the notation</u></h3>
It's important to know how to read and interpret the notation.
For example, the first part of option (a) says "1s2"
- The "1" means the first level or shell
- The "s" means in an s-orbital
- The "2" means there are 2 electrons in that orbital
<h3><u>
</u></h3><h3><u>
Other things to know about electron orbitals</u></h3>
It important to know which orbitals are in each shell:
- In level 1, there is only an s-orbital
- In level 2, there is an s-orbital and a p-orbital
- in level 3, there is an s-orbital, a p-orbital, and a d-orbital <em>(things get a little tricky when the d-orbitals get involved, but this problem is checking on the basic concept -- not the higher level trickery)</em>
So, it's also important to know how many electrons can be in each orbital in order to know if they are full or not. The electrons should fill up these orbitals for each level, in this order:
- s-orbitals can hold 2
- p-orbitals can hold 6
- d-orbitals can hold 10 <em>(but again, that's beyond the scope of this problem)</em>
<h3><u>
Examining how the electrons are filling the orbitals</u></h3>
<u>For option (a):</u>
- the 1s orbital is filled with 2, and
- the 2s orbital has a single electron in it with no other orbitals involved.
This is in it's ground state.
<u>For option (b):</u>
- the 1s orbital is filled with 2,
- the 2s orbital is filled with 2,
- the 2p orbital has 5 (short of a full 6), and
- the 3s orbital has a single electron in it.
Because the 3s orbital has an electron, but the lower 2p before it isn't full. This is NOT in it's ground state.
<u>For option (c):</u>
- the 1s orbital is filled with 2,
- the 2s orbital has 1 (short of a full 2), and
- the 2p orbital is filled with 6
Although the 2p orbital is full, since the 2s orbital before it was not yet full, this is NOT in it's ground state.
<u>For option (d):</u>
- the 1s orbital has 1 (short of a full 2), and
- the 2s orbital is filled with 2
Again, despite that the final orbital (in this case, the 2s orbital), is full, since the 1s orbital before it was not yet full, this is NOT in it's ground state.
Answer:
Larger I believe I might be wrong though
Explanation:
Answer:
The correct answer is : The particles within all three states of matter are constantly moving.
Explanation:
The particles in the solid, liquid and gaseous states are in motion. In the latter is where they present greater movement and high kinetic energy, then follow the liquid state and finally the solid where the movement is more restricted (in this case, the particles vibrate).