Answer:
44.6millilitres
Explanation:
Using the general gas law equation as follows:
P1V1/T1 = P2V2/T2
Where;
P1 = initial pressure (atm)
V1 = initial volume (L)
T1 = initial temperature (K)
P2 = final pressure (atm)
V2 = final volume (L)
T2 = final temperature (K)
According to this question;
V1 = 30mL
T1 = 273K (STP)
P1 = 1 atm (STP)
V2 = ?
T2 = 300K
P2 = 75.0 kPa = 75 × 0.00987 = 0.74atm
Using P1V1/T1 = P2V2/T2
1 × 30/273 = 0.74×V2/300
30/273 = 0.74V2/300
Cross multiply
300 × 30 = 273 × 0.74V2
9000 = 202.02V2
V2 = 9000/202.02
V2 = 44.55
V2 = 44.6millilitres.
Answer:
The correct answer is 0.92 g
Explanation:
The density is defined as the mass per unit of volume:
Density= mass/volume
From the data provided:
volume= 5.4 L
density= 0.17 g/L
Thus, to calculate the mass of helium:
mass= density x volume = 0.17 g/L x 5.4 L= 0.918 g ≅ 0.92 g
Answer:
15.5 moles
Explanation:
Applying,
PV = nRT.................. Equation 1
Where P = pressure, V = Volume, n = number of mole, R = molar gas constant, T = Temperature.
Make n the subject of the equation
n = PV/RT............... Equation 2
From the question,
Given: P = 0.899 atm, V = 425 L, T = 24 °C = (273+24) K = 297 K.
Constant: R = 0.083 L.atm/K.mol
Substitute these values into equation 2
n = (0.899×425)/(297×0.083)
n = 15.5 moles
Answer:
i think snowball, it sounds weird but its true (i think im sorry if its wrong)
Explanation: