Answer:
(a)![D(q)=\frac{-1}{25} q+148](https://tex.z-dn.net/?f=D%28q%29%3D%5Cfrac%7B-1%7D%7B25%7D%20q%2B148)
(b)![S(q)=\frac{1}{50}q+58](https://tex.z-dn.net/?f=S%28q%29%3D%5Cfrac%7B1%7D%7B50%7Dq%2B58)
(c)![p_{*} =88\\\\q_{*} =1500](https://tex.z-dn.net/?f=p_%7B%2A%7D%20%3D88%5C%5C%5C%5Cq_%7B%2A%7D%20%3D1500)
Step-by-step explanation:
(a) For the demand equation D(q) we have
<em>P1: 138 Q1: 250</em>
<em>P2: 108 Q2: 1000</em>
We can find <u><em>m</em></u>, which is the slope of the demand equation,
![m=\frac{p_{2} -p_{1} }{q_{2} -q_{1} }=\frac{108-38}{1000-250} =\frac{-30}{750}=\frac{-1}{25}](https://tex.z-dn.net/?f=m%3D%5Cfrac%7Bp_%7B2%7D%20-p_%7B1%7D%20%7D%7Bq_%7B2%7D%20-q_%7B1%7D%20%7D%3D%5Cfrac%7B108-38%7D%7B1000-250%7D%20%3D%5Cfrac%7B-30%7D%7B750%7D%3D%5Cfrac%7B-1%7D%7B25%7D)
and then we find b, which is the point where the curve intersects the y axis.
We can do it by plugging one point and the slope into the line equation form:
![y=mx+b\\\\D(q)=mq+b\\\\138=\frac{-1}{25}(250) +b\\\\138=-10+b\\\\138+10=b=148](https://tex.z-dn.net/?f=y%3Dmx%2Bb%5C%5C%5C%5CD%28q%29%3Dmq%2Bb%5C%5C%5C%5C138%3D%5Cfrac%7B-1%7D%7B25%7D%28250%29%20%2Bb%5C%5C%5C%5C138%3D-10%2Bb%5C%5C%5C%5C138%2B10%3Db%3D148)
<em>With b: 148 and m: -1/25 we can write our demand equation D(q)</em>
![D(q)=\frac{-1}{25} q+148](https://tex.z-dn.net/?f=D%28q%29%3D%5Cfrac%7B-1%7D%7B25%7D%20q%2B148)
(b) to find the supply equation S(q) we have
<em>P1: 102 Q1: 2200</em>
<em>P2: 102 Q2: 700</em>
<em></em>
Similarly we find <em>m</em>, and <em>b</em>
![m=\frac{p_{2} -p_{1} }{q_{2} -q_{1} }=\frac{72-102}{700-2200} =\frac{-30}{-1500}=\frac{1}{50}](https://tex.z-dn.net/?f=m%3D%5Cfrac%7Bp_%7B2%7D%20-p_%7B1%7D%20%7D%7Bq_%7B2%7D%20-q_%7B1%7D%20%7D%3D%5Cfrac%7B72-102%7D%7B700-2200%7D%20%3D%5Cfrac%7B-30%7D%7B-1500%7D%3D%5Cfrac%7B1%7D%7B50%7D)
![y=mx+b\\\\D(q)=mq+b\\\\72=\frac{1}{50}(700) +b\\\\72=14+b\\\\72-14=b=58\\](https://tex.z-dn.net/?f=y%3Dmx%2Bb%5C%5C%5C%5CD%28q%29%3Dmq%2Bb%5C%5C%5C%5C72%3D%5Cfrac%7B1%7D%7B50%7D%28700%29%20%2Bb%5C%5C%5C%5C72%3D14%2Bb%5C%5C%5C%5C72-14%3Db%3D58%5C%5C)
<em>And we can write our Supply equation S(q):</em>
![S(q)=\frac{1}{50}q+58](https://tex.z-dn.net/?f=S%28q%29%3D%5Cfrac%7B1%7D%7B50%7Dq%2B58)
(c) Now we may find the equilibrium quantity q* and the equilibrium price p* by writing <em>D(q)=S(q)</em>, which means the demand <u><em>equals</em></u> the supply in equilibrium:
![D(q)=S(q)\\\\\frac{-1}{25}q+148=\frac{1}{50}q+58\\\\](https://tex.z-dn.net/?f=D%28q%29%3DS%28q%29%5C%5C%5C%5C%5Cfrac%7B-1%7D%7B25%7Dq%2B148%3D%5Cfrac%7B1%7D%7B50%7Dq%2B58%5C%5C%5C%5C)
![148-58=\frac{1q}{50} +\frac{1q}{25} \\\\90= \frac{1q}{50} +\frac{2q}{50}\\\\90=\frac{3q}{50}\\ \\q=1500\\\\](https://tex.z-dn.net/?f=148-58%3D%5Cfrac%7B1q%7D%7B50%7D%20%2B%5Cfrac%7B1q%7D%7B25%7D%20%5C%5C%5C%5C90%3D%20%5Cfrac%7B1q%7D%7B50%7D%20%2B%5Cfrac%7B2q%7D%7B50%7D%5C%5C%5C%5C90%3D%5Cfrac%7B3q%7D%7B50%7D%5C%5C%20%5C%5Cq%3D1500%5C%5C%5C%5C)
We plug 1500 as q into any equation, in this case S(q) and we get:
![S(q)=\frac{1}{50}q+58\\\\S(1500)=\frac{1}{50}(1500)+58\\\\S(1500)=30+58\\\\S(1500)=88](https://tex.z-dn.net/?f=S%28q%29%3D%5Cfrac%7B1%7D%7B50%7Dq%2B58%5C%5C%5C%5CS%281500%29%3D%5Cfrac%7B1%7D%7B50%7D%281500%29%2B58%5C%5C%5C%5CS%281500%29%3D30%2B58%5C%5C%5C%5CS%281500%29%3D88)
Which is the equilibrium price p*.