True cus i don’t remember but it’s true
Hello :
let :

calculate : x ......x <span>≠ -1
</span>





the inverse function is :

domain of : g is the range of : f
as an interval : ]-∞: 3 <span>[</span>U ]3;+∞[
Well, parallel lines have the same exact slope, so hmmm what's the slope of the one that runs through <span>(0, −3) and (2, 3)?
</span>

<span>
so, we're really looking for a line whose slope is 3, and runs through -1, -1
</span>
![\bf \begin{array}{ccccccccc} &&x_1&&y_1\\ % (a,b) &&(~ -1 &,& -1~) \end{array} \\\\\\ % slope = m slope = m\implies 3 \\\\\\ % point-slope intercept \stackrel{\textit{point-slope form}}{y- y_1= m(x- x_1)}\implies y-(-1)=3[x-(-1)] \\\\\\ y+1=3(x+1)](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7Bccccccccc%7D%0A%26%26x_1%26%26y_1%5C%5C%0A%25%20%20%28a%2Cb%29%0A%26%26%28~%20-1%20%26%2C%26%20-1~%29%0A%5Cend%7Barray%7D%0A%5C%5C%5C%5C%5C%5C%0A%25%20slope%20%20%3D%20m%0Aslope%20%3D%20%20m%5Cimplies%203%0A%5C%5C%5C%5C%5C%5C%0A%25%20point-slope%20intercept%0A%5Cstackrel%7B%5Ctextit%7Bpoint-slope%20form%7D%7D%7By-%20y_1%3D%20m%28x-%20x_1%29%7D%5Cimplies%20y-%28-1%29%3D3%5Bx-%28-1%29%5D%0A%5C%5C%5C%5C%5C%5C%0Ay%2B1%3D3%28x%2B1%29)
<span>
</span>
B would be the least wise...loans have interest which means that when you get around to paying them back you owe more than you borrowed and you can get yourself into even deeper debt. Hope this helps, and if you are able to do so, please mark Brainliest! Thanks!